Pregunta
upstudy study bank question image url

The following integral converges. Evaluate the integral without using tables. \( \int_{-1}^{\infty} \frac{4}{x^{2}+5 x+6} d x \) \( \int_{-1}^{\infty} \frac{4}{x^{2}+5 x+6} d x=\square \) (Type an exact answer.)

Ask by Curry Burns. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The integral evaluates to \(4\,\ln\,2\).

Solución

To evaluate the integral \[ \int_{-1}^{\infty} \frac{4}{x^{2}+5x+6} \, dx, \] we first factor the denominator: \[ x^2 + 5x + 6 = (x + 2)(x + 3). \] So the integral becomes \[ \int_{-1}^{\infty} \frac{4}{(x + 2)(x + 3)} \, dx. \] Next, we use partial fractions to decompose the integrand: \[ \frac{4}{(x + 2)(x + 3)} = \frac{A}{x + 2} + \frac{B}{x + 3}. \] Multiplying both sides by \((x + 2)(x + 3)\): \[ 4 = A(x + 3) + B(x + 2). \] To find \(A\) and \(B\), we can set \(x = -3\) and \(x = -2\): \[ \text{For } x = -3: \quad 4 = A(0) + B(-1) \implies B = -4. \] \[ \text{For } x = -2: \quad 4 = A(1) + B(0) \implies A = 4. \] Thus, the integrand becomes: \[ \frac{4}{(x + 2)(x + 3)} = \frac{4}{x + 2} - \frac{4}{x + 3}. \] Now, integrate term by term: \[ \int \left(\frac{4}{x + 2} - \frac{4}{x + 3}\right) \, dx = 4\ln|x + 2| - 4\ln|x + 3| + C = 4\ln\left(\frac{x + 2}{x + 3}\right) + C. \] Evaluate the definite integral from \(-1\) to \(\infty\): \[ \lim_{x \to \infty} \left[4\ln\left(\frac{x + 2}{x + 3}\right)\right] - \left[4\ln\left(\frac{-1 + 2}{-1 + 3}\right)\right]. \] As \(x \to \infty\), \[ \frac{x + 2}{x + 3} \to 1 \implies \ln\left(\frac{x + 2}{x + 3}\right) \to 0. \] At \(x = -1\), \[ \frac{-1 + 2}{-1 + 3} = \frac{1}{2}, \] so the integral becomes: \[ 0 - 4\ln\left(\frac{1}{2}\right) = 4\ln 2. \] **Answer:** \(4\,\ln\,2\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To evaluate the integral \( \int_{-1}^{\infty} \frac{4}{x^{2}+5 x+6} d x \), we start by factoring the quadratic in the denominator. The expression \( x^2 + 5x + 6 \) factors as \( (x+2)(x+3) \). So we rewrite the integral: \[ \int_{-1}^{\infty} \frac{4}{(x+2)(x+3)} \, dx \] Next, we can use partial fraction decomposition: \[ \frac{4}{(x+2)(x+3)} = \frac{A}{x+2} + \frac{B}{x+3} \] Multiplying through by \( (x+2)(x+3) \) gives: \[ 4 = A(x+3) + B(x+2) \] Setting \( x = -2 \): \[ 4 = A(1) + B(0) \implies A = 4 \] Setting \( x = -3 \): \[ 4 = A(0) + B(-1) \implies B = -4 \] Now we have: \[ \frac{4}{(x+2)(x+3)} = \frac{4}{x+2} - \frac{4}{x+3} \] Thus, the integral becomes: \[ \int_{-1}^{\infty} \left( \frac{4}{x+2} - \frac{4}{x+3} \right) dx \] We can evaluate these integrals separately. 1. \( \int \frac{4}{x+2} \, dx = 4 \ln |x+2| \) 2. \( \int \frac{4}{x+3} \, dx = 4 \ln |x+3| \) So we have: \[ \int_{-1}^{\infty} \frac{4}{x+2} \, dx - \int_{-1}^{\infty} \frac{4}{x+3} \, dx \] Evaluating the limits, first for \( \int_{-1}^\infty \frac{4}{x+2} \, dx \): \[ \lim_{b \to \infty} \left[ 4 \ln |b+2| - 4 \ln |1| \right] = \lim_{b \to \infty} 4 \ln(b+2) \to \infty \] And for \( \int_{-1}^\infty \frac{4}{x+3} \, dx \): \[ \lim_{b \to \infty} \left[ 4 \ln |b+3| - 4 \ln |0| \right] \to \infty \] Both integrals diverge as \( b \to \infty \). However, when taking the limit for the definite bounds from \( -1 \) to \( a \) where \( a \) approaches infinity: \[ \int_{-1}^{a} \left( \frac{4}{x+2} - \frac{4}{x+3} \right) dx \] Evaluating from \(-1\) to \(a\), simplifies to \(4 (\ln(a+2) - \ln(1)) - 4 (\ln(a+3) - \ln(0))\) simplifies to \(4 \ln\left(\frac{a+2}{a+3}\right)\), recognizing that this approaches \(4\ln\left(1\right) = 0\) as \(a\) approaches infinity. Thus, the definite integral converges to: \[ \int_{-1}^{\infty} \frac{4}{(x+2)(x+3)} \, dx = 2 \ln(2) \] So the final answer is: \[ \int_{-1}^{\infty} \frac{4}{x^{2}+5 x+6} d x = 2 \ln(2) \] \(\int_{-1}^{\infty} \frac{4}{x^{2}+5 x+6} d x = 2 \ln(2)\)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad