Pregunta
upstudy study bank question image url

67. A constant unbalanced force of friction acts on a 15.0 -kilogram mass moving along a horizontal surface at 10.0 meters per second. If the mass is breught to rest in 1.50 seconds, what is the magnitude of the force of friction? \( \begin{array}{ll}\text { A) } 10.0 \mathrm{~N} & \text { B) } 100 \mathrm{~N} \\ \text { C) } 147 \mathrm{~N} & \text { D) } 150 . \mathrm{N}\end{array} \)

Ask by Harper Parry. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The magnitude of the force of friction is 100 N.

Solución

To determine the magnitude of the force of friction acting on the mass, we can follow these steps: 1. **Calculate the acceleration (deceleration) of the mass:** The mass is brought to rest, so the final velocity (\( v_f \)) is 0. The initial velocity (\( v_i \)) is 10.0 m/s, and the time (\( t \)) taken to stop is 1.50 seconds. Using the formula for acceleration: \[ a = \frac{v_f - v_i}{t} = \frac{0 - 10.0 \, \text{m/s}}{1.50 \, \text{s}} = -6.67 \, \text{m/s}^2 \] The negative sign indicates deceleration. 2. **Apply Newton's Second Law to find the force of friction:** Newton's Second Law states that: \[ F = m \cdot a \] Substituting the mass (\( m = 15.0 \, \text{kg} \)) and the acceleration: \[ F = 15.0 \, \text{kg} \times (-6.67 \, \text{m/s}^2) = -100 \, \text{N} \] The negative sign indicates that the force of friction acts in the opposite direction of motion. However, since the question asks for the **magnitude** of the force, we take the absolute value: \[ |F| = 100 \, \text{N} \] **Answer:** **B) 100 N**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the force of friction, we can start by calculating the acceleration of the mass as it comes to rest. Using the formula \( a = \frac{Δv}{Δt} \), where \( Δv = 0 - 10.0 \, m/s = -10.0 \, m/s \) and \( Δt = 1.50 \, s \), we get \( a = \frac{-10.0 \, m/s}{1.50 \, s} \approx -6.67 \, m/s^2 \). Now, using Newton’s second law \( F = m \cdot a \), where \( m = 15.0 \, kg \), the force of friction \( F = 15.0 \, kg \cdot (-6.67 \, m/s^2) \). This results in \( F \approx -100.05 \, N \). Since we care about the magnitude of the force, it is approximately \( 100 \, N \). Therefore, the answer is **B) 100 N**. In historical physics, the concept of friction was famously discussed by Sir Isaac Newton, who established the laws of motion that explain how frictional forces act on bodies in motion. The insight into these forces paved the way for advancements in mechanics and engineering, influencing everything from car design to sports equipment. In real-world scenarios, understanding friction is crucial for various applications, such as ensuring that tires have enough grip on the road or creating effective braking systems. Engineers routinely calculate frictional forces when designing vehicles or machinery to prevent accidents and ensure efficiency, demonstrating that these principles permeate our daily lives.

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad