Pregunta
upstudy study bank question image url

At the flower shop, a rose and a lily cost \( \$ 8 \), and a rose and a carnation cost \( \$ 10.50 \). If Cinderella bought 6 roses, 2 lilies, and a carnation for \( \$ 34 \), what is the cost of one lily?

Ask by Graham Tran. in Australia
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

One lily costs \$5.50.

Solución

Let's define the costs as follows: - \( r \) = cost of one rose - \( l \) = cost of one lily - \( c \) = cost of one carnation We are given the following equations: 1. \( r + l = 8 \)  \( \text{(Equation 1)} \) 2. \( r + c = 10.50 \)  \( \text{(Equation 2)} \) 3. \( 6r + 2l + c = 34 \)  \( \text{(Equation 3)} \) **Step 1: Solve for \( r \) from Equation 1** \[ r = 8 - l \] **Step 2: Substitute \( r \) into Equation 2 to find \( c \)** \[ 8 - l + c = 10.50 \\ c = 10.50 - 8 + l \\ c = 2.50 + l \] **Step 3: Substitute \( r \) and \( c \) into Equation 3** \[ 6(8 - l) + 2l + (2.50 + l) = 34 \\ 48 - 6l + 2l + 2.50 + l = 34 \\ 48 + 2.50 - 6l + 2l + l = 34 \\ 50.50 - 3l = 34 \] **Step 4: Solve for \( l \)** \[ -3l = 34 - 50.50 \\ -3l = -16.50 \\ l = \frac{-16.50}{-3} \\ l = 5.50 \] **Conclusion:** One lily costs **\$5.50**. **Answer:** One lily costs \$5.50.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the problem, let's denote the cost of a rose as \( r \), the cost of a lily as \( l \), and the cost of a carnation as \( c \). From the problem, we have the following equations based on the costs: 1. \( r + l = 8 \) (the cost of a rose and a lily) 2. \( r + c = 10.50 \) (the cost of a rose and a carnation) Cinderella's total purchase can be described by the equation: 3. \( 6r + 2l + c = 34 \) Now, let's solve the equations step by step. From equation 1, we can express \( l \) in terms of \( r \): \[ l = 8 - r \] From equation 2, we can express \( c \) in terms of \( r \): \[ c = 10.50 - r \] Now we'll substitute \( l \) and \( c \) back into equation 3: \[ 6r + 2(8 - r) + (10.50 - r) = 34 \] Distributing and combining like terms: \[ 6r + 16 - 2r + 10.50 - r = 34 \] \[ (6r - 2r - r) + 26.50 = 34 \] \[ 3r + 26.50 = 34 \] Next, we isolate \( r \): \[ 3r = 34 - 26.50 \] \[ 3r = 7.50 \] \[ r = 2.50 \] Now that we have the cost of a rose \( r \), we can find \( l \) using the first equation: \[ l = 8 - r = 8 - 2.50 = 5.50 \] Lastly, to confirm the calculation, let's find the cost of the carnation \( c \): \[ c = 10.50 - r = 10.50 - 2.50 = 8 \] So the costs are: - Rose \( r = 2.50 \) - Lily \( l = 5.50 \) - Carnation \( c = 8 \) Thus, the cost of one lily is \( \boxed{5.50} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad