floor is \( 2,4 \mathrm{~m} \). a Express the side lengths as a ratio. b Express the area of the floor and the area of one tile as a ratio. c How many tiles are required to cover the floor?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To express the side lengths as a ratio, first, we will assume the floor is rectangular with one side as \(2 \, \text{m}\) and the other side as \(4 \, \text{m}\). The ratio of the side lengths is \(2:4\), which simplifies to \(1:2\). Next, to express the area of the floor (which is \(2 \times 4 = 8 \, \text{m}^2\)) and the area of one tile (let’s say one tile has an area of \(0.25 \, \text{m}^2\)). The area ratio will be \(8:0.25\), which simplifies to \(32:1\). To determine how many tiles are required to cover the floor, we divide the total area of the floor by the area of one tile: \(8 \, \text{m}^2 \div 0.25 \, \text{m}^2 = 32\). Therefore, you will need 32 tiles to completely cover the floor!