Responder
To simplify expressions with rational exponents, follow these steps:
1. **Combine like bases** using the product and quotient rules.
2. **Simplify the exponents** by performing arithmetic on the fractions.
3. **Express in radical form** if it helps simplify the expression.
4. **Factor inside radicals** when possible.
**Example:**
Simplify \( \frac{m^{\frac{5}{6}} \cdot m^{\frac{1}{3}}}{m^{\frac{1}{2}}} \).
- Combine exponents: \( m^{\frac{5}{6} + \frac{2}{6}} = m^{\frac{7}{6}} \)
- Divide by \( m^{\frac{1}{2}} \): \( m^{\frac{7}{6} - \frac{3}{6}} = m^{\frac{4}{6}} = m^{\frac{2}{3}} \)
- Optional radical form: \( \sqrt[3]{m^2} \)
**Final Answer:** \( m^{\frac{2}{3}} \) or \( \sqrt[3]{m^2} \)
Solución
Certainly! Simplifying expressions with rational (fractional) exponents is a fundamental concept in algebra. Rational exponents allow us to express roots and powers in a unified way. Here's a comprehensive guide to understanding and simplifying such expressions.
### **Understanding Rational Exponents**
A **rational exponent** is an exponent that is a fraction, such as \( \frac{m}{n} \). The general form is:
\[
x^{\frac{m}{n}}
\]
This can be interpreted in two equivalent ways:
1. **Root Form**:
\[
x^{\frac{m}{n}} = \sqrt[n]{x^m}
\]
This means you take the \( n \)-th root of \( x \) raised to the \( m \)-th power.
2. **Power Form**:
\[
x^{\frac{m}{n}} = \left( \sqrt[n]{x} \right)^m
\]
This means you first take the \( n \)-th root of \( x \) and then raise the result to the \( m \)-th power.
### **Key Properties of Exponents**
To simplify expressions with rational exponents, it's essential to recall some exponent rules:
1. **Product of Powers**:
\[
x^a \cdot x^b = x^{a + b}
\]
2. **Quotient of Powers**:
\[
\frac{x^a}{x^b} = x^{a - b}
\]
3. **Power of a Power**:
\[
\left( x^a \right)^b = x^{a \cdot b}
\]
4. **Power of a Product**:
\[
(xy)^a = x^a \cdot y^a
\]
5. **Power of a Quotient**:
\[
\left( \frac{x}{y} \right)^a = \frac{x^a}{y^a}
\]
### **Simplification Steps**
Let's go through a step-by-step example to illustrate how to simplify an expression with rational exponents.
**Example: Simplify \( \frac{x^{\frac{3}{4}} \cdot x^{\frac{2}{3}}}{x^{\frac{1}{2}}} \)**
**Step 1: Apply the Product of Powers Rule**
When multiplying like bases, add the exponents:
\[
x^{\frac{3}{4}} \cdot x^{\frac{2}{3}} = x^{\frac{3}{4} + \frac{2}{3}}
\]
To add the exponents, find a common denominator (12 in this case):
\[
\frac{3}{4} = \frac{9}{12}, \quad \frac{2}{3} = \frac{8}{12}
\]
\[
\frac{9}{12} + \frac{8}{12} = \frac{17}{12}
\]
\[
x^{\frac{3}{4}} \cdot x^{\frac{2}{3}} = x^{\frac{17}{12}}
\]
**Step 2: Apply the Quotient of Powers Rule**
Now, divide by \( x^{\frac{1}{2}} \):
\[
\frac{x^{\frac{17}{12}}}{x^{\frac{1}{2}}} = x^{\frac{17}{12} - \frac{1}{2}}
\]
Convert \( \frac{1}{2} \) to twelfths:
\[
\frac{1}{2} = \frac{6}{12}
\]
\[
\frac{17}{12} - \frac{6}{12} = \frac{11}{12}
\]
\[
\frac{x^{\frac{17}{12}}}{x^{\frac{1}{2}}} = x^{\frac{11}{12}}
\]
**Final Simplified Form:**
\[
x^{\frac{11}{12}}
\]
### **Another Example with Variables**
**Example: Simplify \( \left( \frac{a^{\frac{2}{3}} \cdot b^{\frac{3}{4}}}{a^{\frac{1}{6}}} \right)^2 \)**
**Step 1: Simplify Inside the Parentheses**
Apply the product and quotient rules for exponents:
\[
\frac{a^{\frac{2}{3}}}{a^{\frac{1}{6}}} = a^{\frac{2}{3} - \frac{1}{6}} = a^{\frac{4}{6} - \frac{1}{6}} = a^{\frac{3}{6}} = a^{\frac{1}{2}}
\]
\[
\text{Thus, the expression inside becomes } a^{\frac{1}{2}} \cdot b^{\frac{3}{4}}
\]
**Step 2: Apply the Power Outside the Parentheses**
Raise each part to the power of 2:
\[
\left( a^{\frac{1}{2}} \cdot b^{\frac{3}{4}} \right)^2 = \left( a^{\frac{1}{2}} \right)^2 \cdot \left( b^{\frac{3}{4}} \right)^2 = a^{1} \cdot b^{\frac{6}{4}} = a \cdot b^{\frac{3}{2}}
\]
**Final Simplified Form:**
\[
a \cdot b^{\frac{3}{2}} \quad \text{or} \quad a \sqrt{b^3} = a b^{1.5}
\]
### **Converting Between Radical and Exponent Form**
Sometimes, it's helpful to express the final answer in radical form, especially if it simplifies the expression:
- **Example 1: \( x^{\frac{3}{2}} \)**
\[
x^{\frac{3}{2}} = \left( \sqrt{x} \right)^3 = \sqrt{x^3} = x \sqrt{x}
\]
- **Example 2: \( y^{-\frac{4}{5}} \)**
\[
y^{-\frac{4}{5}} = \frac{1}{y^{\frac{4}{5}}} = \frac{1}{\sqrt[5]{y^4}}
\]
### **Summary of Steps to Simplify Expressions with Rational Exponents**
1. **Identify like bases** and apply the product or quotient rules to combine exponents.
2. **Convert negative exponents** to positive by moving the term to the numerator or denominator.
3. **Simplify the exponents** by performing the arithmetic on the fractions.
4. **Express in radical form** if it makes the expression clearer or simpler.
5. **Factor expressions** inside radicals when possible to simplify further.
### **Practice Problem**
**Simplify:** \( \frac{m^{\frac{5}{6}} \cdot m^{\frac{1}{3}}}{m^{\frac{1}{2}}} \)
**Solution:**
1. **Combine exponents in the numerator:**
\[
m^{\frac{5}{6}} \cdot m^{\frac{1}{3}} = m^{\frac{5}{6} + \frac{2}{6}} = m^{\frac{7}{6}}
\]
2. **Divide by \( m^{\frac{1}{2}} \):**
\[
\frac{m^{\frac{7}{6}}}{m^{\frac{1}{2}}} = m^{\frac{7}{6} - \frac{3}{6}} = m^{\frac{4}{6}} = m^{\frac{2}{3}}
\]
3. **Optional - Express in radical form:**
\[
m^{\frac{2}{3}} = \sqrt[3]{m^2}
\]
**Final Answer:** \( m^{\frac{2}{3}} \) or \( \sqrt[3]{m^2} \)
---
Feel free to provide a specific expression you'd like to simplify if you need further assistance!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución