Pregunta
upstudy study bank question image url

Simplify expressions involving rational exponents I 2 VX nplify. Assume all variables are positive.

Ask by O'Quinn Stewart. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To simplify expressions with rational exponents, follow these steps: 1. **Combine like bases** using the product and quotient rules. 2. **Simplify the exponents** by performing arithmetic on the fractions. 3. **Express in radical form** if it helps simplify the expression. 4. **Factor inside radicals** when possible. **Example:** Simplify \( \frac{m^{\frac{5}{6}} \cdot m^{\frac{1}{3}}}{m^{\frac{1}{2}}} \). - Combine exponents: \( m^{\frac{5}{6} + \frac{2}{6}} = m^{\frac{7}{6}} \) - Divide by \( m^{\frac{1}{2}} \): \( m^{\frac{7}{6} - \frac{3}{6}} = m^{\frac{4}{6}} = m^{\frac{2}{3}} \) - Optional radical form: \( \sqrt[3]{m^2} \) **Final Answer:** \( m^{\frac{2}{3}} \) or \( \sqrt[3]{m^2} \)

Solución

Certainly! Simplifying expressions with rational (fractional) exponents is a fundamental concept in algebra. Rational exponents allow us to express roots and powers in a unified way. Here's a comprehensive guide to understanding and simplifying such expressions. ### **Understanding Rational Exponents** A **rational exponent** is an exponent that is a fraction, such as \( \frac{m}{n} \). The general form is: \[ x^{\frac{m}{n}} \] This can be interpreted in two equivalent ways: 1. **Root Form**: \[ x^{\frac{m}{n}} = \sqrt[n]{x^m} \] This means you take the \( n \)-th root of \( x \) raised to the \( m \)-th power. 2. **Power Form**: \[ x^{\frac{m}{n}} = \left( \sqrt[n]{x} \right)^m \] This means you first take the \( n \)-th root of \( x \) and then raise the result to the \( m \)-th power. ### **Key Properties of Exponents** To simplify expressions with rational exponents, it's essential to recall some exponent rules: 1. **Product of Powers**: \[ x^a \cdot x^b = x^{a + b} \] 2. **Quotient of Powers**: \[ \frac{x^a}{x^b} = x^{a - b} \] 3. **Power of a Power**: \[ \left( x^a \right)^b = x^{a \cdot b} \] 4. **Power of a Product**: \[ (xy)^a = x^a \cdot y^a \] 5. **Power of a Quotient**: \[ \left( \frac{x}{y} \right)^a = \frac{x^a}{y^a} \] ### **Simplification Steps** Let's go through a step-by-step example to illustrate how to simplify an expression with rational exponents. **Example: Simplify \( \frac{x^{\frac{3}{4}} \cdot x^{\frac{2}{3}}}{x^{\frac{1}{2}}} \)** **Step 1: Apply the Product of Powers Rule** When multiplying like bases, add the exponents: \[ x^{\frac{3}{4}} \cdot x^{\frac{2}{3}} = x^{\frac{3}{4} + \frac{2}{3}} \] To add the exponents, find a common denominator (12 in this case): \[ \frac{3}{4} = \frac{9}{12}, \quad \frac{2}{3} = \frac{8}{12} \] \[ \frac{9}{12} + \frac{8}{12} = \frac{17}{12} \] \[ x^{\frac{3}{4}} \cdot x^{\frac{2}{3}} = x^{\frac{17}{12}} \] **Step 2: Apply the Quotient of Powers Rule** Now, divide by \( x^{\frac{1}{2}} \): \[ \frac{x^{\frac{17}{12}}}{x^{\frac{1}{2}}} = x^{\frac{17}{12} - \frac{1}{2}} \] Convert \( \frac{1}{2} \) to twelfths: \[ \frac{1}{2} = \frac{6}{12} \] \[ \frac{17}{12} - \frac{6}{12} = \frac{11}{12} \] \[ \frac{x^{\frac{17}{12}}}{x^{\frac{1}{2}}} = x^{\frac{11}{12}} \] **Final Simplified Form:** \[ x^{\frac{11}{12}} \] ### **Another Example with Variables** **Example: Simplify \( \left( \frac{a^{\frac{2}{3}} \cdot b^{\frac{3}{4}}}{a^{\frac{1}{6}}} \right)^2 \)** **Step 1: Simplify Inside the Parentheses** Apply the product and quotient rules for exponents: \[ \frac{a^{\frac{2}{3}}}{a^{\frac{1}{6}}} = a^{\frac{2}{3} - \frac{1}{6}} = a^{\frac{4}{6} - \frac{1}{6}} = a^{\frac{3}{6}} = a^{\frac{1}{2}} \] \[ \text{Thus, the expression inside becomes } a^{\frac{1}{2}} \cdot b^{\frac{3}{4}} \] **Step 2: Apply the Power Outside the Parentheses** Raise each part to the power of 2: \[ \left( a^{\frac{1}{2}} \cdot b^{\frac{3}{4}} \right)^2 = \left( a^{\frac{1}{2}} \right)^2 \cdot \left( b^{\frac{3}{4}} \right)^2 = a^{1} \cdot b^{\frac{6}{4}} = a \cdot b^{\frac{3}{2}} \] **Final Simplified Form:** \[ a \cdot b^{\frac{3}{2}} \quad \text{or} \quad a \sqrt{b^3} = a b^{1.5} \] ### **Converting Between Radical and Exponent Form** Sometimes, it's helpful to express the final answer in radical form, especially if it simplifies the expression: - **Example 1: \( x^{\frac{3}{2}} \)** \[ x^{\frac{3}{2}} = \left( \sqrt{x} \right)^3 = \sqrt{x^3} = x \sqrt{x} \] - **Example 2: \( y^{-\frac{4}{5}} \)** \[ y^{-\frac{4}{5}} = \frac{1}{y^{\frac{4}{5}}} = \frac{1}{\sqrt[5]{y^4}} \] ### **Summary of Steps to Simplify Expressions with Rational Exponents** 1. **Identify like bases** and apply the product or quotient rules to combine exponents. 2. **Convert negative exponents** to positive by moving the term to the numerator or denominator. 3. **Simplify the exponents** by performing the arithmetic on the fractions. 4. **Express in radical form** if it makes the expression clearer or simpler. 5. **Factor expressions** inside radicals when possible to simplify further. ### **Practice Problem** **Simplify:** \( \frac{m^{\frac{5}{6}} \cdot m^{\frac{1}{3}}}{m^{\frac{1}{2}}} \) **Solution:** 1. **Combine exponents in the numerator:** \[ m^{\frac{5}{6}} \cdot m^{\frac{1}{3}} = m^{\frac{5}{6} + \frac{2}{6}} = m^{\frac{7}{6}} \] 2. **Divide by \( m^{\frac{1}{2}} \):** \[ \frac{m^{\frac{7}{6}}}{m^{\frac{1}{2}}} = m^{\frac{7}{6} - \frac{3}{6}} = m^{\frac{4}{6}} = m^{\frac{2}{3}} \] 3. **Optional - Express in radical form:** \[ m^{\frac{2}{3}} = \sqrt[3]{m^2} \] **Final Answer:** \( m^{\frac{2}{3}} \) or \( \sqrt[3]{m^2} \) --- Feel free to provide a specific expression you'd like to simplify if you need further assistance!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To simplify expressions involving rational exponents like \(2Vx\), remember that rational exponents are just another way to express roots. For instance, \(x^{\frac{1}{2}}\) is equivalent to \(\sqrt{x}\). Thus, \(2Vx\) can be rewritten as \(2\sqrt{x}\) when considering rational exponents. This understanding not only helps in simplifying expressions but also in visualizing relationships between numbers. For example, if you know \(x = 4\), then \(2Vx\) becomes \(2\sqrt{4} = 2 \cdot 2 = 4\). Being familiar with how to manipulate these exponents can aid significantly in calculus and algebra.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad