Pregunta
upstudy study bank question image url

Critique the reasoning of others. Marcellus made the statement that the sum of two polynomials is al homial with degree equal to the highest power of \( x \) found in either of the original polynomials. He gave wing example \( +5 x+4)+(6 x+1)=3 x^{2}+11 x+5 \) agree with Marcellus? If not, give you counterexample to support your answer.

Ask by Parry Burgess. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Marcellus's statement is incorrect. Adding two polynomials does not always result in a polynomial with the highest degree of the original ones. For example, adding \( x^2 + 2x + 3 \) and \( -x^2 + x + 4 \) gives \( 3x + 7 \), which is a first-degree polynomial despite the original polynomials being second-degree.

Solución

Marcellus's statement contains a misunderstanding regarding the degrees of polynomials when they are added together. Let's break down his claim and analyze it critically. ### **Marcellus's Claim:** - **Statement:** *The sum of two polynomials is a polynomial with degree equal to the highest power of \( x \) found in either of the original polynomials.* - **Example Provided:** \[ (5x + 4) + (6x + 1) = 3x^{2} + 11x + 5 \] ### **Analysis of the Example:** 1. **Original Polynomials:** - \( P(x) = 5x + 4 \)  **(Degree 1)** - \( Q(x) = 6x + 1 \)  **(Degree 1)** 2. **Sum of Polynomials:** \[ P(x) + Q(x) = (5x + 4) + (6x + 1) = 11x + 5 \] - **Resulting Polynomial:** \( 11x + 5 \)  **(Degree 1)** 3. **Discrepancy Identified:** - Marcellus claims the sum is \( 3x^{2} + 11x + 5 \) (Degree 2). - However, the correct sum is \( 11x + 5 \) (Degree 1). ### **Critique of Marcellus's Reasoning:** - **Incorrect Example:** The example provided by Marcellus is mathematically incorrect. Adding two first-degree polynomials should not yield a second-degree polynomial unless there are higher-degree terms in the original polynomials, which is not the case here. - **General Statement Misconception:** Even if Marcellus's example were correct, his general statement overlooks scenarios where the highest-degree terms cancel each other out upon addition, resulting in a polynomial of lower degree than the maximum of the original degrees. ### **Counterexample to Support the Critique:** Let's consider two polynomials where the highest-degree terms cancel each other out when summed. - **Polynomial 1:** \( P(x) = x^{2} + 2x + 3 \)  **(Degree 2)** - **Polynomial 2:** \( Q(x) = -x^{2} + x + 4 \)  **(Degree 2)** **Sum of Polynomials:** \[ P(x) + Q(x) = (x^{2} + 2x + 3) + (-x^{2} + x + 4) = (x^{2} - x^{2}) + (2x + x) + (3 + 4) = 3x + 7 \] - **Resulting Polynomial:** \( 3x + 7 \)  **(Degree 1)** **Conclusion from Counterexample:** Despite both original polynomials being of degree 2, their sum is a first-degree polynomial. This shows that Marcellus's assertion is not universally valid. ### **Correct Statement:** The **degree of the sum** of two polynomials is **at most** the highest degree among the original polynomials. It **equals** the highest degree **unless** the leading terms (highest-degree terms) cancel each other out during the addition. ### **Final Verdict:** Marcellus's reasoning is **incorrect** both in his provided example and in his general statement. The degree of the sum of two polynomials does not always equal the highest degree of the original polynomials; it can be lower if leading terms cancel each other.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Marcellus's reasoning is not entirely accurate. While it’s true that the sum of two polynomials can result in a polynomial whose degree is equal to the higher degree of the two original polynomials, his example doesn’t support his claim. Instead of demonstrating that the sum retains the highest degree, it actually results in a polynomial of lower degree. For instance, consider the polynomials \( f(x) = 2x^2 + 3 \) and \( g(x) = -2x^2 + 1 \). When we sum them: \[ f(x) + g(x) = (2x^2 + 3) + (-2x^2 + 1) = 0x^2 + 4 \] The resulting polynomial is simply \( 4 \), which has a degree of \( 0 \), much lower than the degree of either \( f(x) \) or \( g(x) \). Therefore, it demonstrates that the sum can indeed lose the highest degree if the leading terms cancel each other out.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad