Pregunta
upstudy study bank question image url

Suppose that a loan of \( \$ 5000 \) is given at an interest rate of \( 17 \% \) compounded each year. Assume that no payments are made on the loan. Follow the instructions below. Do not do any rounding. (a) Find the amount owed at the end of 1 year. \( \$ \square \) (b) Find the amount owed at the end of 2 years. \( \$ \square \)

Ask by Davey Bernard. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Amount owed at the end of 1 year:** \$5850 **Amount owed at the end of 2 years:** \$6844.5

Solución

Let's calculate the amount owed at the end of each year using the compound interest formula: \[ A = P \times (1 + r)^n \] where: - \( A \) is the amount owed, - \( P \) is the principal amount (\$5,000), - \( r \) is the annual interest rate (17% or 0.17), - \( n \) is the number of years. ### (a) Amount Owed at the End of 1 Year For \( n = 1 \): \[ A = 5000 \times (1 + 0.17)^1 = 5000 \times 1.17 = 5850 \] **Amount owed at the end of 1 year:** \(\$5850\) ### (b) Amount Owed at the End of 2 Years For \( n = 2 \): \[ A = 5000 \times (1 + 0.17)^2 = 5000 \times 1.3689 = 6844.5 \] **Amount owed at the end of 2 years:** \(\$6844.5\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To calculate the amount owed when interest is compounded annually, you can use the formula: \[ A = P(1 + r)^n \] where \( A \) is the amount owed, \( P \) is the principal amount (initial loan), \( r \) is the annual interest rate (in decimal), and \( n \) is the number of years. (a) For 1 year: \[ A = 5000(1 + 0.17)^1 = 5000(1.17) = 5850 \] So, the amount owed at the end of 1 year is \( \$ 5850 \). (b) For 2 years: \[ A = 5000(1 + 0.17)^2 = 5000(1.17)^2 = 5000(1.3689) = 6844.5 \] Therefore, the amount owed at the end of 2 years is \( \$ 6844.5 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad