Pregunta
upstudy study bank question image url

Given the function \( f(x)=\int_{1}^{x}\left(t^{4}-16 t^{3}\right) d t \) determine all \( x \)-values, if any, for which \( f \) has a point of inflection.

Ask by Wilson Barber. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) \) has a point of inflection at \( x = 12 \).

Solución

To determine the \( x \)-values where the function \( f(x) = \int_{1}^{x} \left(t^4 - 16t^3\right) dt \) has a point of inflection, we'll follow these steps: 1. **Find the First Derivative \( f'(x) \):** By the Fundamental Theorem of Calculus, \[ f'(x) = x^4 - 16x^3. \] 2. **Find the Second Derivative \( f''(x) \):** Differentiate \( f'(x) \) with respect to \( x \): \[ f''(x) = \frac{d}{dx}(x^4 - 16x^3) = 4x^3 - 48x^2 = 4x^2(x - 12). \] 3. **Determine Potential Points of Inflection:** Points of inflection occur where \( f''(x) = 0 \) and there is a change in the sign of \( f''(x) \). Set \( f''(x) = 0 \): \[ 4x^2(x - 12) = 0 \quad \Rightarrow \quad x = 0 \text{ or } x = 12. \] 4. **Test for Sign Change Around Each Critical Point:** - **At \( x = 0 \):** - **For \( x < 0 \):** \[ f''(x) = 4x^2(x - 12) > 0 \times (-) = < 0. \] - **For \( x > 0 \):** \[ f''(x) = 4x^2(x - 12) > 0 \times (-) = < 0. \] Since there is no sign change, \( x = 0 \) is **not** a point of inflection. - **At \( x = 12 \):** - **For \( x < 12 \):** \[ f''(x) = 4x^2(x - 12) > 0 \times (-) = < 0. \] - **For \( x > 12 \):** \[ f''(x) = 4x^2(x - 12) > 0 \times (+) = > 0. \] There is a sign change from negative to positive, indicating a point of inflection at \( x = 12 \). **Conclusion:** The function \( f(x) \) has a single point of inflection at \( x = 12 \). **Answer:** Only at x = 12 does f  have a point of inflection.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the points of inflection of the function \( f(x) = \int_{1}^{x} (t^4 - 16t^3) \, dt \), we first need to compute the second derivative of \( f \). 1. Start by applying the Fundamental Theorem of Calculus to find the first derivative \( f'(x) \): \[ f'(x) = \frac{d}{dx}\left(\int_{1}^{x} (t^4 - 16t^3) \, dt\right) = x^4 - 16x^3. \] 2. Now, we need the second derivative \( f''(x) \): \[ f''(x) = \frac{d}{dx}(f'(x)) = \frac{d}{dx}(x^4 - 16x^3) = 4x^3 - 48x^2. \] 3. To find the points of inflection, we set \( f''(x) = 0 \): \[ 4x^3 - 48x^2 = 0. \] Factoring out \( 4x^2 \): \[ 4x^2(x - 12) = 0. \] This gives us the solutions: \[ 4x^2 = 0 \quad \text{or} \quad x - 12 = 0. \] Thus, \( x = 0 \) or \( x = 12 \). 4. Finally, we need to check if these points are indeed points of inflection by testing the sign of \( f''(x) \) around these values. Choose test points in the intervals \( (-\infty, 0) \), \( (0, 12) \), and \( (12, \infty) \): - For \( x < 0 \) (e.g., \( x = -1 \)): \( f''(-1) = 4(-1)^3 - 48(-1)^2 = -4 - 48 = -52 \) (negative). - For \( 0 < x < 12 \) (e.g., \( x = 1 \)): \( f''(1) = 4(1)^3 - 48(1)^2 = 4 - 48 = -44 \) (negative). - For \( x > 12 \) (e.g., \( x = 13 \)): \( f''(13) = 4(13)^3 - 48(13)^2 = 4(2197) - 48(169) = 8788 - 8112 = 676 \) (positive). Since the sign of \( f''(x) \) changes at \( x = 12 \) (from negative to positive), this indicates that \( x = 12 \) is indeed a point of inflection. Thus, the \( x \)-value for which \( f \) has a point of inflection is: \[ \boxed{12}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad