Pregunta
upstudy study bank question image url

A circle has the equation \( 4(x-2)^{2}+4 y^{2}=4 \). (a) Find the center ( \( h, k \) ) and radius \( r \) of the circle (b) Graph the circle. (c) Find the intercepts, if any, of the graph.

Ask by Gibson Mcguire. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **Center:** \((2, 0)\) - **Radius:** \(1\) - **X-Intercepts:** \((1, 0)\) and \((3, 0)\) - **Y-Intercepts:** None

Solución

Certainly! Let's break down each part of the problem step by step. --- ## **Problem Statement** A circle has the equation: \[ 4(x - 2)^2 + 4y^2 = 4 \] **Tasks:** a) Find the center \((h, k)\) and radius \(r\) of the circle. b) Graph the circle. c) Find the intercepts, if any, of the graph. --- ## **Part (a): Finding the Center and Radius** To identify the center and radius of the circle, we'll rewrite the given equation in the **standard form** of a circle's equation: \[ (x - h)^2 + (y - k)^2 = r^2 \] where \((h, k)\) is the center and \(r\) is the radius. **Given Equation:** \[ 4(x - 2)^2 + 4y^2 = 4 \] **Steps:** 1. **Divide both sides by 4** to simplify: \[ \frac{4(x - 2)^2}{4} + \frac{4y^2}{4} = \frac{4}{4} \] \[ (x - 2)^2 + y^2 = 1 \] 2. **Compare with the standard form**: \[ (x - h)^2 + (y - k)^2 = r^2 \] From the comparison: - \( h = 2 \) - \( k = 0 \) - \( r^2 = 1 \) ⇒ \( r = 1 \) **Answer:** - **Center \((h, k)\):** \((2, 0)\) - **Radius \(r\):** \(1\) --- ## **Part (b): Graphing the Circle** While I can't provide a graphical image directly, I can guide you on how to sketch the circle based on the center and radius found. **Steps to Graph:** 1. **Plot the Center:** - Locate the point \((2, 0)\) on the Cartesian plane. 2. **Draw the Circle:** - Using the radius \(r = 1\), draw a circle that extends 1 unit in all directions from the center. - The circle will touch the points: - **Right:** \((3, 0)\) - **Left:** \((1, 0)\) - **Top:** \((2, 1)\) - **Bottom:** \((2, -1)\) **Visual Guide:** ``` y | 1 | • (2,1) | 0 | • (1,0) • (2,0) • (3,0) | -1| • (2,-1) | +--------------------------- x ``` - The center is at \((2, 0)\). - The circle has a radius of 1, connecting the center to each of the four points shown. --- ## **Part (c): Finding the Intercepts** **Intercepts** are points where the graph crosses the axes. ### **1. X-Intercepts** To find the x-intercepts, set \( y = 0 \) and solve for \( x \). **Given Equation:** \[ (x - 2)^2 + y^2 = 1 \] **Set \( y = 0 \):** \[ (x - 2)^2 + 0^2 = 1 \] \[ (x - 2)^2 = 1 \] \[ x - 2 = \pm 1 \] \[ x = 2 \pm 1 \] \[ x = 3 \quad \text{or} \quad x = 1 \] **X-Intercepts:** - \((3, 0)\) - \((1, 0)\) ### **2. Y-Intercepts** To find the y-intercepts, set \( x = 0 \) and solve for \( y \). **Set \( x = 0 \):** \[ (0 - 2)^2 + y^2 = 1 \] \[ 4 + y^2 = 1 \] \[ y^2 = 1 - 4 \] \[ y^2 = -3 \] Since \( y^2 \) cannot be negative in the set of real numbers, there are **no y-intercepts**. --- ## **Summary of Intercepts** - **X-Intercepts:** \((1, 0)\) and \((3, 0)\) - **Y-Intercepts:** None --- Feel free to ask if you have any further questions or need additional explanations!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the problem, let's begin with the first part: (a) The given equation of the circle is \( 4(x-2)^{2}+4 y^{2}=4 \). We can simplify this equation by dividing everything by 4: \[ (x-2)^{2} + y^{2} = 1. \] This shows us the standard form of the circle's equation, which is \((x-h)^2 + (y-k)^2 = r^2\). From this, we can identify the center \( (h, k) \) as \( (2, 0) \) and the radius \( r \) as \( 1 \) (since \( r^2 = 1 \)). (b) To graph the circle, plot the center at the point \( (2, 0) \) on the Cartesian plane. From the center, move 1 unit in all four directions: up, down, left, and right. This creates a circle that touches the points \( (1, 0) \), \( (3, 0) \), \( (2, 1) \), and \( (2, -1) \). (c) To find the intercepts, check where the circle intersects the x-axis and y-axis. For the x-intercepts, set \( y = 0 \): \[ (x-2)^{2} + 0^{2} = 1 \implies (x-2)^{2} = 1. \] This gives \( x-2 = 1 \) or \( x-2 = -1 \), yielding \( x = 3 \) and \( x = 1 \). So, the x-intercepts are \( (1, 0) \) and \( (3, 0) \). For the y-intercepts, set \( x = 0 \): \[ (0-2)^{2} + y^{2} = 1 \implies 4 + y^{2} = 1 \implies y^{2} = -3. \] Since \( y^{2} = -3 \) has no real solutions, the circle has no y-intercepts. **Summary:** - Center \( (h, k) = (2, 0) \) - Radius \( r = 1 \) - X-intercepts at \( (1, 0) \) and \( (3, 0) \); no y-intercepts.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad