Pregunta
upstudy study bank question image url

A subjective test consists of two sections, A and B. Each question in Section A and Section B are allotted \( x \) marks and \( y \) marks respectively. Ali answered correctly 8 questions from Section A and 7 questions from Section B. Aiman answered correctly 9 questions from Section A and 5 questions from Section B. Ali and Aiman scored 59 marks and 52 marks respectively. Using the matrix method, calculate the values of \( x \) and \( y \).

Ask by Hobbs Chambers. in Malaysia
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Each question in Section A is worth 3 marks, and each question in Section B is worth 5 marks.

Solución

To determine the values of \( x \) and \( y \) using the **matrix method**, we'll follow these steps: 1. **Set Up the Equations** From the problem statement, we can form the following system of linear equations based on the scores of Ali and Aiman: \[ \begin{cases} 8x + 7y = 59 & \text{(Ali's score)} \\ 9x + 5y = 52 & \text{(Aiman's score)} \end{cases} \] 2. **Represent the System in Matrix Form** The system can be written as: \[ \begin{bmatrix} 8 & 7 \\ 9 & 5 \\ \end{bmatrix} \begin{bmatrix} x \\ y \\ \end{bmatrix} = \begin{bmatrix} 59 \\ 52 \\ \end{bmatrix} \] Let's denote: \[ \mathbf{A} = \begin{bmatrix} 8 & 7 \\ 9 & 5 \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} x \\ y \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 59 \\ 52 \end{bmatrix} \] So, the matrix equation is: \[ \mathbf{A} \mathbf{X} = \mathbf{B} \] 3. **Find the Inverse of Matrix \( \mathbf{A} \)** First, compute the determinant of \( \mathbf{A} \): \[ \text{det}(\mathbf{A}) = (8)(5) - (9)(7) = 40 - 63 = -23 \] Since the determinant is not zero, \( \mathbf{A} \) is invertible. The inverse of \( \mathbf{A} \) is: \[ \mathbf{A}^{-1} = \frac{1}{\text{det}(\mathbf{A})} \begin{bmatrix} 5 & -7 \\ -9 & 8 \\ \end{bmatrix} = \frac{1}{-23} \begin{bmatrix} 5 & -7 \\ -9 & 8 \\ \end{bmatrix} \] 4. **Multiply Both Sides by \( \mathbf{A}^{-1} \)** To solve for \( \mathbf{X} \): \[ \mathbf{X} = \mathbf{A}^{-1} \mathbf{B} \] Let's compute this multiplication: \[ \mathbf{X} = \frac{1}{-23} \begin{bmatrix} 5 & -7 \\ -9 & 8 \\ \end{bmatrix} \begin{bmatrix} 59 \\ 52 \\ \end{bmatrix} \] 5. **Calculate the Products** - **For \( x \):** \[ x = \frac{1}{-23} \left(5 \times 59 + (-7) \times 52\right) = \frac{1}{-23} \left(295 - 364\right) = \frac{1}{-23} \times (-69) = 3 \] - **For \( y \):** \[ y = \frac{1}{-23} \left((-9) \times 59 + 8 \times 52\right) = \frac{1}{-23} \left(-531 + 416\right) = \frac{1}{-23} \times (-115) = 5 \] 6. **Solution** \[ x = 3 \quad \text{and} \quad y = 5 \] **Therefore, each question in Section A is worth 3 marks, and each question in Section B is worth 5 marks.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve for \( x \) and \( y \) using the matrix method based on the information given, we can set up a system of equations derived from the scores of Ali and Aiman. From the problem, we gather the following information: 1. For Ali: \[ 8x + 7y = 59 \quad \text{(Eq. 1)} \] 2. For Aiman: \[ 9x + 5y = 52 \quad \text{(Eq. 2)} \] Now we can express this system in matrix form: \[ \begin{bmatrix} 8 & 7 \\ 9 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 59 \\ 52 \end{bmatrix} \] To solve this system using the inverse of the matrix, let's denote the coefficient matrix as \( A \) and the constant matrix as \( B \): \[ A = \begin{bmatrix} 8 & 7 \\ 9 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 59 \\ 52 \end{bmatrix} \] Next, we find the inverse of matrix \( A \): The determinant of \( A \) is calculated as: \[ \text{det}(A) = (8)(5) - (7)(9) = 40 - 63 = -23 \] The inverse \( A^{-1} \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{-23} \begin{bmatrix} 5 & -7 \\ -9 & 8 \end{bmatrix} \] Now, we compute: \[ A^{-1} = \begin{bmatrix} \frac{5}{-23} & \frac{-7}{-23} \\ \frac{-9}{-23} & \frac{8}{-23} \end{bmatrix} = \begin{bmatrix} -\frac{5}{23} & \frac{7}{23} \\ \frac{9}{23} & -\frac{8}{23} \end{bmatrix} \] To find \( \begin{bmatrix} x \\ y \end{bmatrix} \), we multiply \( A^{-1} \) with \( B \): \[ \begin{bmatrix} x \\ y \end{bmatrix} = A^{-1} B = \begin{bmatrix} -\frac{5}{23} & \frac{7}{23} \\ \frac{9}{23} & -\frac{8}{23} \end{bmatrix} \begin{bmatrix} 59 \\ 52 \end{bmatrix} \] Calculating this gives: \[ x = -\frac{5}{23}(59) + \frac{7}{23}(52) = -\frac{295}{23} + \frac{364}{23} = \frac{69}{23} = 3 \] \[ y = \frac{9}{23}(59) - \frac{8}{23}(52) = \frac{531}{23} - \frac{416}{23} = \frac{115}{23} = 5 \] Thus, the values are \( x = 3 \) and \( y = 5 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad