Pregunta
upstudy study bank question image url

\( \lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-\sqrt{x^{2}-x}\right) \quad \) (c) \( \quad \lim _{x \rightarrow \infty}\left[\frac{\sqrt{y+1}+\sqrt{y-1}}{y}\right] \)

Ask by Barber Weaver. in Malawi
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The limits are: 1. \( \lim_{x \rightarrow \infty} \left( \sqrt{x^{2} + x} - \sqrt{x^{2} - x} \right) = 1 \) 2. \( \lim_{y \rightarrow \infty} \left[ \frac{\sqrt{y + 1} + \sqrt{y - 1}}{y} \right] = 0 \)

Solución

Let's evaluate the two limits you've provided: 1. **First Limit:** \[ \lim_{x \rightarrow \infty} \left( \sqrt{x^{2} + x} - \sqrt{x^{2} - x} \right) \] 2. **Second Limit (Part c):** \[ \lim_{y \rightarrow \infty} \left[ \frac{\sqrt{y + 1} + \sqrt{y - 1}}{y} \right] \] --- ### 1. Evaluating \(\lim_{x \rightarrow \infty} \left( \sqrt{x^{2} + x} - \sqrt{x^{2} - x} \right)\) **Step 1: Factor Out \(x^2\) Inside the Square Roots** \[ \sqrt{x^{2} + x} = x \sqrt{1 + \frac{1}{x}} \\ \sqrt{x^{2} - x} = x \sqrt{1 - \frac{1}{x}} \] **Step 2: Expand Using the Binomial Approximation for Large \(x\)** \[ \sqrt{1 + \frac{1}{x}} \approx 1 + \frac{1}{2x} \\ \sqrt{1 - \frac{1}{x}} \approx 1 - \frac{1}{2x} \] **Step 3: Substitute Back into the Original Expression** \[ \sqrt{x^{2} + x} - \sqrt{x^{2} - x} \approx x \left(1 + \frac{1}{2x}\right) - x \left(1 - \frac{1}{2x}\right) = x + \frac{1}{2} - x + \frac{1}{2} = 1 \] **Conclusion:** \[ \lim_{x \rightarrow \infty} \left( \sqrt{x^{2} + x} - \sqrt{x^{2} - x} \right) = 1 \] --- ### 2. Evaluating \(\lim_{y \rightarrow \infty} \left[ \frac{\sqrt{y + 1} + \sqrt{y - 1}}{y} \right]\) **Step 1: Factor Out \(y\) Inside Each Square Root** \[ \sqrt{y + 1} = \sqrt{y} \sqrt{1 + \frac{1}{y}} \\ \sqrt{y - 1} = \sqrt{y} \sqrt{1 - \frac{1}{y}} \] **Step 2: Expand Using the Binomial Approximation for Large \(y\)** \[ \sqrt{1 + \frac{1}{y}} \approx 1 + \frac{1}{2y} \\ \sqrt{1 - \frac{1}{y}} \approx 1 - \frac{1}{2y} \] **Step 3: Substitute Back into the Original Expression** \[ \frac{\sqrt{y + 1} + \sqrt{y - 1}}{y} \approx \frac{\sqrt{y} \left(1 + \frac{1}{2y}\right) + \sqrt{y} \left(1 - \frac{1}{2y}\right)}{y} = \frac{2\sqrt{y}}{y} = \frac{2}{\sqrt{y}} \] **Step 4: Take the Limit as \(y \rightarrow \infty\)** \[ \lim_{y \rightarrow \infty} \frac{2}{\sqrt{y}} = 0 \] **Conclusion:** \[ \lim_{y \rightarrow \infty} \left[ \frac{\sqrt{y + 1} + \sqrt{y - 1}}{y} \right] = 0 \] --- ### **Final Answers:** 1. \(\lim_{x \rightarrow \infty} \left( \sqrt{x^{2} + x} - \sqrt{x^{2} - x} \right) = 1\) 2. \(\lim_{y \rightarrow \infty} \left[ \frac{\sqrt{y + 1} + \sqrt{y - 1}}{y} \right] = 0\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the limit \( \lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-\sqrt{x^{2}-x}\right) \), we can first factor out \( \sqrt{x^2} \) from each square root. We rewrite it as follows: \[ \sqrt{x^{2}+x}=\sqrt{x^{2}(1+\frac{1}{x})} = x\sqrt{1+\frac{1}{x}} \] \[ \sqrt{x^{2}-x}=\sqrt{x^{2}(1-\frac{1}{x})} = x\sqrt{1-\frac{1}{x}} \] Now our limit becomes: \[ \lim_{x \to \infty} \left( x\sqrt{1+\frac{1}{x}} - x\sqrt{1-\frac{1}{x}} \right) = \lim_{x \to \infty} x\left(\sqrt{1+\frac{1}{x}} - \sqrt{1-\frac{1}{x}}\right) \] As \( x \to \infty \), both \( \sqrt{1+\frac{1}{x}} \) and \( \sqrt{1-\frac{1}{x}} \) approach 1. However, we can use the binomial expansion for small values of the arguments: \[ \sqrt{1+\frac{1}{x}} \approx 1 + \frac{1}{2x}, \quad \sqrt{1-\frac{1}{x}} \approx 1 - \frac{1}{2x} \] So, we have: \[ \sqrt{1+\frac{1}{x}} - \sqrt{1-\frac{1}{x}} \approx \left(1 + \frac{1}{2x}\right) - \left(1 - \frac{1}{2x}\right) = \frac{1}{x} \] Now substitute back: \[ \lim_{x \to \infty} x\left(\frac{1}{x}\right) = \lim_{x \to \infty} 1 = 1 \] Thus, the solution to the first limit is: \[ \lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-\sqrt{x^{2}-x}\right) = 1 \] --- For the second limit \( \lim_{y \to \infty} \left[\frac{\sqrt{y+1} + \sqrt{y-1}}{y}\right] \), we will simplify the expression similarly by dividing the terms in the numerator by \( y \): \[ = \lim_{y \to \infty} \left[\frac{\sqrt{y(1 + \frac{1}{y})} + \sqrt{y(1 - \frac{1}{y})}}{y}\right] \] Rearranging gives: \[ = \lim_{y \to \infty} \left[\frac{\sqrt{y}(\sqrt{1 + \frac{1}{y}} + \sqrt{1 - \frac{1}{y}})}{y}\right] = \lim_{y \to \infty} \frac{\sqrt{1 + \frac{1}{y}} + \sqrt{1 - \frac{1}{y}}}{\sqrt{y}} \] As \( y \to \infty \), \( \sqrt{1 + \frac{1}{y}} \) and \( \sqrt{1 - \frac{1}{y}} \) approach 1. Therefore, we have: \[ \frac{1 + 1}{\sqrt{y}} = \frac{2}{\sqrt{y}} \to 0 \text{ as } y \to \infty \] Thus, the solution to the second limit is: \[ \lim_{y \to \infty} \left[\frac{\sqrt{y+1} + \sqrt{y-1}}{y}\right] = 0 \] In summary: 1. The first limit equals 1. 2. The second limit equals 0.

preguntas relacionadas

Multiple Choice Identify the choice that best completes the statement or answers the question. Find any points of discontinuity for the rational function. 1. \( y=\frac{(x-7)(x+2)(x-9)}{(x-5)(x-2)} \) a. \( x=-5, x=-2 \) b. \( x=5, x=2 \) c. \( x=-7, x=2, x=-9 \) d. \( x=7, x=-2, x=9 \) 2. \( y=\frac{(x+7)(x+4)(x+2)}{(x+5)(x-3)} \) a. \( x=-5, x=3 \) b. \( x=7, x=4, x=2 \) c. \( x=-7, x=-4, x=-2 \) d. \( x=5, x=-3 \) 3. \( y=\frac{x+4}{x^{2}+8 x+15} \) a. \( x=-5, x=-3 \) b. \( x=-4 \) c. \( x=-5, x=3 \) d. \( x=5, x=3 \) 4. \( y=\frac{x-3}{x^{2}+3 x-10} \) a. \( x=-5, x=2 \) b. \( x=5, x=-2 \) c. \( x=3 \) d. \( x \) \( =-5, x=-2 \) 6. What are the points of discontinuity? Are they all removable? \[ y=\frac{(x-4)}{x^{2}-13 x+36} \] a. \( x=-9, x=-4, x=8 \); yes b. \( x=1, x=8, x= \) -8; no c. \( x=9, x=4 \); no d. \( x=-9, x=-4 \); no 7. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{(x-2)(x-5)}{(x-5)(x+2)} \). a. asymptote: \( x=2 \) and hole: \( x=-5 \) b. asymptotes: \( x=-2 \) and hole: \( x=-5 \) c. asymptote: \( x=-2 \) and hole: \( x=5 \) d. asymptote: \( x=-2 \) and hole: \( x=-2 \) a. \( x=-3, x=-8 \); no b. \( x=5, x=-7, x=1 \); no c. \( x=-5, x=7, x=-1 \); yes d. \( x=3, x=8 \); yes 8. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{x+1}{x^{2}+6 x+5} \). a. asymptote: \( x=-1 \) and hole: \( x=-1 \) b. asymptote: \( x=-1 \) and hole: \( x=-1 \) c. asymptotes: \( x=-1,-1 \) and hole: \( x=-1 \) d. asymptote: -5 and hole: \( x=-1 \), 9. Find the horizontal asymptote of the graph of \( y=\frac{7 x^{6}+7 x+3}{9 x^{5}+7 x+3} \). a. \( y=0 \) b. \( y=\frac{7}{9} \) c. no horizontal asymptote d. \( y=\frac{6}{5} \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad