Complete parts (a) through (c) below. a. Find two unit vectors parallel to \( v=-24 i-7 j \). b. Find b if \( \mathrm{v}=\left\langle\frac{1}{6}, \mathrm{~b}\right) \) is a unit vector. c. Find all values of a such that \( \mathrm{w}=\mathrm{ai}-\frac{\mathrm{a}}{10} \mathrm{j} \) is a unit vector. a. The parallel unit vector with the same direction is
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the unit vectors parallel to \( v = -24i - 7j \), we first calculate the magnitude of \( v \): \[ \|v\| = \sqrt{(-24)^2 + (-7)^2} = \sqrt{576 + 49} = \sqrt{625} = 25. \] The unit vector in the same direction is: \[ u_1 = \frac{1}{\|v\|} v = \frac{1}{25}(-24i - 7j) = -\frac{24}{25}i - \frac{7}{25}j. \] For the unit vector in the opposite direction: \[ u_2 = -u_1 = \frac{24}{25}i + \frac{7}{25}j. \] So the two unit vectors parallel to \( v \) are: \[ -\frac{24}{25}i - \frac{7}{25}j \quad \text{and} \quad \frac{24}{25}i + \frac{7}{25}j. \] Next, let’s find \( b \) for \( v = \left\langle \frac{1}{6}, b \right\rangle \) to be a unit vector: The magnitude of this vector must equal 1: \[ \sqrt{\left(\frac{1}{6}\right)^2 + b^2} = 1. \] Squaring both sides: \[ \frac{1}{36} + b^2 = 1 \implies b^2 = 1 - \frac{1}{36} = \frac{36}{36} - \frac{1}{36} = \frac{35}{36}. \] Thus, \( b = \pm \sqrt{\frac{35}{36}} = \pm \frac{\sqrt{35}}{6} \). Now, for \( w = ai - \frac{a}{10}j \) to be a unit vector: Calculate the magnitude: \[ \|w\| = \sqrt{a^2 + \left(-\frac{a}{10}\right)^2} = \sqrt{a^2 + \frac{a^2}{100}} = \sqrt{a^2\left(1 + \frac{1}{100}\right)} = \sqrt{a^2 \frac{101}{100}} = |a| \sqrt{\frac{101}{100}}. \] Setting \( |a| \sqrt{\frac{101}{100}} = 1 \) gives: \[ |a| = \frac{1}{\sqrt{\frac{101}{100}}} = \frac{10}{\sqrt{101}}. \] Thus, \( a = \pm \frac{10}{\sqrt{101}} \). In summary: - Two unit vectors parallel to \( v \) are \( -\frac{24}{25}i - \frac{7}{25}j \) and \( \frac{24}{25}i + \frac{7}{25}j \). - The values for \( b \) are \( \pm \frac{\sqrt{35}}{6} \). - The values for \( a \) are \( \pm \frac{10}{\sqrt{101}} \).