(1) Find the value of \( \log 2512 \) ? (2) Expand \( \log \frac{x 2 y 3}{z^{2}} \) (3) If \( 5^{x+1}=7^{1-x} \) Find \( X \) value. (4) If \( x^{2}+y^{2}=27 x y \), Show that \( \log \left(\frac{x-y}{5}\right)=\frac{1}{2}(\log x+\log y) \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the value of \( \log 2512 \), you can use its prime factorization. By breaking it down, \( 2512 = 2^4 \times 157 \), thus \( \log 2512 = \log(2^4 \times 157) = 4 \log 2 + \log 157 \). When expanding \( \log \frac{x^2 y^3}{z^2} \), use the properties of logarithms. You would get \( \log x^2 + \log y^3 - \log z^2 = 2 \log x + 3 \log y - 2 \log z \). This helps simplify the expression nicely! For solving \( 5^{x+1} = 7^{1-x} \), take logs on both sides. After manipulation, this gives you an equation in terms of \( x \). Solving yields \( x = \frac{\log 7 - 1}{\log 5 + \log 7} \). In the equation \( x^2 + y^2 = 27xy \), rearranging leads to \( \frac{x-y}{5} \) appearing naturally. By manipulating the terms and applying logarithmic identities, you can derive \( \log \left(\frac{x-y}{5}\right)=\frac{1}{2}(\log x+\log y) \); it’s like piecing together a mathematical puzzle!