Pregunta
upstudy study bank question image url

What is the domain of the function \( f(x)=\log _{10}(x+1) ? \)

Ask by Olson Smith. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The domain of \( f(x) = \log_{10}(x + 1) \) is all real numbers greater than \(-1\), which can be written as \( (-1, \infty) \).

Solución

The domain of a logarithmic function \( f(x) = \log_{10}(x + 1) \) consists of all real numbers \( x \) for which the argument of the logarithm is positive. In this case, the argument is \( x + 1 \). ### Steps to Determine the Domain: 1. **Set the Argument Greater Than Zero:** \[ x + 1 > 0 \] 2. **Solve for \( x \):** \[ x > -1 \] ### Conclusion: The function \( f(x) = \log_{10}(x + 1) \) is defined for all real numbers \( x \) that are greater than \(-1\). **Domain in Interval Notation:** \[ (-1, \infty) \] **Graphical Representation:** ![Domain of log₁₀(x + 1)](https://i.imgur.com/YourImageLink.png) *Note: Replace with an actual image if needed.* This means that any input \( x \) must be greater than \(-1\) for the function to yield a real number.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the domain of the function \( f(x) = \log_{10}(x + 1) \), we need to determine when the argument of the logarithm, \( x + 1 \), is positive. That is, we require \( x + 1 > 0 \). Solving this inequality, we get \( x > -1 \). Therefore, the domain of \( f(x) \) is all real numbers greater than \(-1\), which can be expressed in interval notation as \( (-1, \infty) \). Understanding logarithmic functions is super interesting! Did you know that logarithms were invented in the early 17th century by John Napier as a way to simplify complex calculations, especially for astronomers and navigators who had to deal with huge numbers? In practical terms, the logarithm function is widely used in computer science, particularly in algorithms that have logarithmic time complexity, like binary search. This means that as the input size increases, the number of operations grows much more slowly than the size itself—which is quite handy when you need efficiency in your code!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad