Pregunta
Factor the trinomial. \( 20 a^{2}-23 a d+6 d^{2} \) Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( 20 a^{2}-23 a d+6 d^{2}=\square \) (Factor completely.) B. The trinomial is prime.
Ask by Adkins Gordon. in the United States
Jan 22,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( 20a^{2} - 23ad + 6d^{2} = (5a - 2d)(4a - 3d) \)
Solución
To factor the trinomial \( 20a^{2} - 23ad + 6d^{2} \), we'll look for two binomials of the form \((ma + nd)(pa + qd)\) such that:
\[
(mp)a^{2} + (mq + np)ad + (nq)d^{2} = 20a^{2} - 23ad + 6d^{2}
\]
**Step 1: Identify Possible Pairs**
1. **For \(a^{2}\) term:**
\(mp = 20\)
Possible pairs: \((5, 4)\), \((10, 2)\), \((20, 1)\)
2. **For \(d^{2}\) term:**
\(nq = 6\)
Possible pairs: \((3, 2)\), \((2, 3)\), \((6, 1)\), \((1, 6)\)
**Step 2: Find the Correct Combination**
Let's try the pair \((5a, 4a)\) for the \(a^{2}\) term.
- Let \(m = 5\) and \(p = 4\).
Now, we need to find \(n\) and \(q\) such that:
\[
5q + 4n = -23 \quad \text{and} \quad nq = 6
\]
Trying \(n = -2\) and \(q = -3\):
\[
5(-3) + 4(-2) = -15 - 8 = -23 \quad \text{and} \quad (-2)(-3) = 6
\]
This combination satisfies both conditions.
**Step 3: Write the Factored Form**
\[
20a^{2} - 23ad + 6d^{2} = (5a - 2d)(4a - 3d)
\]
**Answer:**
**A.**
\[
20 a^{2}-23 a d+6 d^{2}=(5a-2d)(4a-3d)
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To factor the trinomial \( 20 a^{2}-23 a d+6 d^{2} \), we need to look for two binomials that multiply to give the original expression. We can start by checking the potential factors. After some calculations, we have: \( 20 a^{2}-23 a d+6 d^{2} = (4a - 3d)(5a - 2d) \). Now you can fill in your answer box with \( (4a - 3d)(5a - 2d) \).
preguntas relacionadas
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium