Pregunta
Write the domain and range for the square root function \( y=6 \sqrt{2 x-7}-2 \) ? Enter any fractions as improper fractions. (1 point) The domain is \( \{x \mid x \geq \square\} \) and the range is \( \{y \mid y \geq \square \). Check answer Remaining Attempts : 3
Ask by Moreno Owen. in the United States
Jan 21,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The domain is \( \{x \mid x \geq \frac{7}{2}\} \) and the range is \( \{y \mid y \geq -2\} \).
Solución
The domain and range for the function \( y = 6 \sqrt{2x - 7} - 2 \) are determined as follows:
**Domain:**
The expression inside the square root must be non-negative:
\[
2x - 7 \geq 0 \implies 2x \geq 7 \implies x \geq \frac{7}{2}
\]
So, the domain is:
\[
\{x \mid x \geq \frac{7}{2}\}
\]
**Range:**
The square root function \( \sqrt{2x - 7} \) is always non-negative. Multiplying by 6 keeps it non-negative:
\[
6 \sqrt{2x - 7} \geq 0
\]
Subtracting 2 shifts the range down by 2:
\[
y = 6 \sqrt{2x - 7} - 2 \geq -2
\]
So, the range is:
\[
\{y \mid y \geq -2\}
\]
**Final Answer:**
The domain is \( \{x \mid x \geq \frac{7}{2}\} \) and the range is \( \{y \mid y \geq -2\} \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To determine the domain of the function \( y=6 \sqrt{2 x-7}-2 \), we need to ensure the expression inside the square root is non-negative. Setting \( 2x - 7 \geq 0 \) gives us \( x \geq \frac{7}{2} \). Thus, the domain is \( \{x \mid x \geq \frac{7}{2}\} \). For the range, we know that the square root function outputs values starting from zero. Multiplying by 6 and then subtracting 2 means the minimum value of \( y \) occurs when the square root is zero (i.e., at \( x = \frac{7}{2} \)). Therefore, the range is \( \{y \mid y \geq -2\} \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium