Pregunta
upstudy study bank question image url

Also, \( \left(\frac{d y}{d x}\right)_{x=3}=3.3^{2}=27 \) Example 2.2: Show that for \( y=|x|, \frac{d y}{d x} \) does not exist at \( x=0 \)

Ask by Bob Santiago. in India
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The derivative of \( y = |x| \) does not exist at \( x = 0 \) because the left and right derivatives are different.

Solución

Certainly! Let's **demonstrate why the derivative of \( y = |x| \) does not exist at \( x = 0 \)**. ### Understanding the Function \( y = |x| \) The absolute value function is defined as: \[ y = |x| = \begin{cases} x & \text{if } x \geq 0, \\ -x & \text{if } x < 0. \end{cases} \] This piecewise definition indicates that the function behaves differently on either side of \( x = 0 \). ### Derivative from the Right (\( x \to 0^+ \)) When approaching \( x = 0 \) from the **right** (i.e., \( x > 0 \)): \[ y = x \] The derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = 1 \] ### Derivative from the Left (\( x \to 0^- \)) When approaching \( x = 0 \) from the **left** (i.e., \( x < 0 \)): \[ y = -x \] The derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = -1 \] ### Comparing the One-Sided Derivatives - **From the Right:** \( \frac{dy}{dx} = 1 \) - **From the Left:** \( \frac{dy}{dx} = -1 \) Since these two one-sided derivatives are **not equal**, the overall derivative at \( x = 0 \) **does not exist**. ### Visual Interpretation Graphically, \( y = |x| \) forms a "V" shape at \( x = 0 \). The slopes of the lines on either side of \( x = 0 \) are slopes of 1 and -1, respectively. At the vertex \( x = 0 \), there's a sharp corner where these two lines meet, creating a point where the function is **not differentiable**. ### Formal Definition Using Limits To further solidify this, we can use the limit definition of the derivative: \[ \frac{dy}{dx}\bigg|_{x=0} = \lim_{h \to 0} \frac{|0 + h| - |0|}{h} = \lim_{h \to 0} \frac{|h|}{h} \] Evaluating the limit: - **As \( h \to 0^+ \):** \[ \lim_{h \to 0^+} \frac{h}{h} = \lim_{h \to 0^+} 1 = 1 \] - **As \( h \to 0^- \):** \[ \lim_{h \to 0^-} \frac{-h}{h} = \lim_{h \to 0^-} -1 = -1 \] Since the left-hand limit (\(-1\)) does not equal the right-hand limit (\(1\)), the overall limit **does not exist**. Therefore, \( \frac{dy}{dx} \) is undefined at \( x = 0 \). ### Conclusion The derivative \( \frac{dy}{dx} \) for the function \( y = |x| \) does **not exist** at \( x = 0 \) because the slopes from the left and right do not match, resulting in a discontinuity in the derivative at that point.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let's take a closer look at the function \( y = |x| \). The derivative \( \frac{d y}{d x} \) represents the slope of the tangent line at every point on this curve. As \( x \) approaches 0 from the left, the slope is -1, while approaching from the right, the slope is +1. Since these two slopes are not equal, the derivative does not exist at \( x = 0 \) because there's a 'kink' in the graph facing upward! This concept isn't unique to just the absolute value function. It can also apply to any function that has a sharp turn or cusp. For example, think of a piece of graph paper where you plot different shapes—the moment you hit a corner or a change in direction, the smoothness is disrupted, leading to a non-existent derivative at that point.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad