By what number should \( (-6)^{-1} \) be multiplid so that the product becomes \( 9^{-1} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve the problem, we need to find the number \( x \) such that: \[ (-6)^{-1} \cdot x = 9^{-1}. \] First, let's simplify \( (-6)^{-1} \) and \( 9^{-1} \): \[ (-6)^{-1} = \frac{1}{-6} = -\frac{1}{6}, \] \[ 9^{-1} = \frac{1}{9}. \] Now we can set up the equation: \[ -\frac{1}{6} \cdot x = \frac{1}{9}. \] To isolate \( x \), we can multiply both sides of the equation by \(-6\): \[ x = \frac{1}{9} \cdot (-6). \] Calculating this gives: \[ x = -\frac{6}{9} = -\frac{2}{3}. \] Thus, the number by which \( (-6)^{-1} \) should be multiplied to yield \( 9^{-1} \) is \[ \boxed{-\frac{2}{3}}. \]