\( \int x ^ { n } d x = \frac { x ^ { n + 1 } } { n + 1 } + 0 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
Did you know that the integration rule you mentioned is a fundamental part of calculus developed over centuries? The basic ideas of integration can be traced back to ancient civilizations, but the formalization occurred in the 17th century with mathematicians like Newton and Leibniz. They introduced the concept of the integral as the area under a curve, which laid the groundwork for modern calculus! Now, in terms of real-world application, this integration formula is incredibly useful in various fields. Electrical engineers use it to find charge in circuits, while economists apply it to determine consumer surplus. It even pops up in physics when calculating the motion of an object under uniform acceleration. So, understanding this rule can help you tackle real-life problems across different domains!