Pregunta
upstudy study bank question image url

QUESTION 3: AC THEORY \( \begin{array}{l}\text { The armature of an alternator rotates at } 3000 \text { rev/min between the poles of a } \\ \text { magnet. The maximum voltage of the generated wave is } 35,36 \mathrm{~V} \text { and the } \\ \text { waveform is sinusoidal. } \\ \text { Calculate the following: } \\ \begin{array}{ll}3.1 .1 \quad \text { The frequency } \\ 3.1 .2 & \text { The instantaneous } \mathrm{EMF} \text { after } 0,004 \text { seconds } \\ 3.1 .3 \quad \text { The time taken from the instant zero to reach } 20 \mathrm{~V} \text { for the first time } & \text { (5) } \\ 3.2 & \text { Define the term phasor diagram. }\end{array}\end{array} \begin{array}{l}\text { (2) }\end{array} \)

Ask by Hodgson Fowler. in South Africa
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Simplified Answers:** 1. **Frequency (f):** \[ \boxed{50 \, \text{Hz}} \] 2. **Instantaneous EMF After 0.004 Seconds:** \[ \boxed{33.6 \, \text{V}} \] 3. **Time to Reach 20 V for the First Time:** \[ \boxed{1.92 \, \text{milliseconds}} \] 4. **Phasor Diagram:** A graphical tool that uses rotating vectors to show the magnitudes and phase angles of sinusoidal voltages or currents in an AC circuit, simplifying the analysis of their relationships.

Solución

### **QUESTION 3: AC THEORY** **Given:** - **Rotational Speed (N):** 3000 revolutions per minute (rev/min) - **Maximum Voltage (Eₘₐₓ):** 35.36 V - **Waveform:** Sinusoidal Let's address each part of the question step-by-step. --- ### **3.1.1. Calculate the Frequency (f)** **Formula:** \[ f = \frac{N \times P}{120} \] Where: - \( N \) = Rotational speed in rev/min - \( P \) = Number of poles **Assumption:** - **Number of Poles (P):** 2 (since the alternator is rotating between the poles of a magnet) **Calculation:** \[ f = \frac{3000 \times 2}{120} = \frac{6000}{120} = 50 \, \text{Hz} \] **Answer:** \[ \boxed{50 \, \text{Hz}} \] --- ### **3.1.2. Calculate the Instantaneous EMF After 0.004 Seconds** **Formula for Instantaneous EMF:** \[ E(t) = Eₘₐₓ \times \sin(2\pi f t) \] **Given:** - \( Eₘₐₓ = 35.36 \, \text{V} \) - \( f = 50 \, \text{Hz} \) - \( t = 0.004 \, \text{seconds} \) **Calculation:** \[ E(t) = 35.36 \times \sin(2\pi \times 50 \times 0.004) \] \[ E(t) = 35.36 \times \sin(0.4\pi) \] \[ \sin(0.4\pi) \approx \sin(72^\circ) \approx 0.9511 \] \[ E(t) \approx 35.36 \times 0.9511 \approx 33.6 \, \text{V} \] **Answer:** \[ \boxed{33.6 \, \text{V}} \] --- ### **3.1.3. Calculate the Time Taken to Reach 20 V for the First Time** **Given:** - \( E(t) = 20 \, \text{V} \) - \( Eₘₐₓ = 35.36 \, \text{V} \) - \( f = 50 \, \text{Hz} \) **Steps:** 1. Set up the equation: \[ 35.36 \times \sin(2\pi \times 50 \times t) = 20 \] 2. Solve for the sine term: \[ \sin(2\pi \times 50 \times t) = \frac{20}{35.36} \approx 0.566 \] 3. Find the angle: \[ 2\pi \times 50 \times t = \arcsin(0.566) \approx 0.601 \, \text{radians} \] 4. Solve for \( t \): \[ t = \frac{0.601}{2\pi \times 50} \approx \frac{0.601}{314.16} \approx 0.001915 \, \text{seconds} \] \[ t \approx 1.915 \, \text{milliseconds} \] **Answer:** \[ \boxed{1.92 \, \text{milliseconds}} \] --- ### **3.2. Define the Term Phasor Diagram** **Definition:** A **phasor diagram** is a graphical representation used in alternating current (AC) circuit analysis to depict the magnitude and phase relationships between sinusoidal voltages or currents. In this diagram: - **Phasors** are represented as rotating vectors in a two-dimensional plane. - The **length** of each phasor corresponds to the amplitude (magnitude) of the waveform. - The **angle** each phasor makes with the reference axis represents the phase angle relative to a chosen reference phasor. **Purpose:** Phasor diagrams simplify the analysis of AC circuits by allowing engineers to visualize and calculate the resultant voltages and currents based on their magnitudes and phase angles. **Answer:** --- **Phasor Diagram**: *A graphical representation that uses rotating vectors (phasors) to illustrate the magnitudes and phase angles of sinusoidal voltages or currents in an AC circuit, showing their relative amplitudes and phase relationships.* ---

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the frequency, we use the formula \( f = \frac{N \cdot R}{60} \), where \( N \) is the number of poles and \( R \) is the revolutions per minute (3000). If we assume the alternator has 2 poles, the frequency is \( f = \frac{2 \cdot 3000}{60} = 100 \, \text{Hz} \). Next, to calculate the instantaneous EMF at \( t = 0.004 \) seconds for a sinusoidal waveform, we use the formula \( E(t) = E_{max} \sin(2 \pi ft) \). Substituting \( E_{max} = 35.36 \, V \), \( f = 100 \, Hz \), and \( t = 0.004 \, s \), we find \( E(0.004) = 35.36 \sin(2 \pi \cdot 100 \cdot 0.004) \), which gives us the instantaneous EMF. To determine the time taken to reach 20 V for the first time, we set \( E(t) = 20 \) and use the same formula to solve for \( t \). A phasor diagram is like a pictorial representation of alternating currents and voltages. Imagine spinning arrows—each representing a sinusoidal waveform—that tell you not just the size (magnitude) of the current or voltage but also the angle—the phase—of it! These diagrams make it easier to visualize how different AC quantities relate to each other in terms of phase and amplitude.

preguntas relacionadas

Latest Engineering Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad