QUESTION 3: AC THEORY \( \begin{array}{l}\text { The armature of an alternator rotates at } 3000 \text { rev/min between the poles of a } \\ \text { magnet. The maximum voltage of the generated wave is } 35,36 \mathrm{~V} \text { and the } \\ \text { waveform is sinusoidal. } \\ \text { Calculate the following: } \\ \begin{array}{ll}3.1 .1 \quad \text { The frequency } \\ 3.1 .2 & \text { The instantaneous } \mathrm{EMF} \text { after } 0,004 \text { seconds } \\ 3.1 .3 \quad \text { The time taken from the instant zero to reach } 20 \mathrm{~V} \text { for the first time } & \text { (5) } \\ 3.2 & \text { Define the term phasor diagram. }\end{array}\end{array} \begin{array}{l}\text { (2) }\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the frequency, we use the formula \( f = \frac{N \cdot R}{60} \), where \( N \) is the number of poles and \( R \) is the revolutions per minute (3000). If we assume the alternator has 2 poles, the frequency is \( f = \frac{2 \cdot 3000}{60} = 100 \, \text{Hz} \). Next, to calculate the instantaneous EMF at \( t = 0.004 \) seconds for a sinusoidal waveform, we use the formula \( E(t) = E_{max} \sin(2 \pi ft) \). Substituting \( E_{max} = 35.36 \, V \), \( f = 100 \, Hz \), and \( t = 0.004 \, s \), we find \( E(0.004) = 35.36 \sin(2 \pi \cdot 100 \cdot 0.004) \), which gives us the instantaneous EMF. To determine the time taken to reach 20 V for the first time, we set \( E(t) = 20 \) and use the same formula to solve for \( t \). A phasor diagram is like a pictorial representation of alternating currents and voltages. Imagine spinning arrows—each representing a sinusoidal waveform—that tell you not just the size (magnitude) of the current or voltage but also the angle—the phase—of it! These diagrams make it easier to visualize how different AC quantities relate to each other in terms of phase and amplitude.