Pregunta
upstudy study bank question image url

1. Two ice skaters skate on a slippery (frictionless) ice rink. Daniel (mass 60 kg ) is skating northwards at \( 1 \mathrm{~m} . \mathrm{s}-1 \) and Lauren (mass 50 kg ) is skating towards him at \( 0,6 \mathrm{~m} . \mathrm{s}-1 \). They collide inelastically with each other. Lauren's velocity after the collision is \( 0,8 \mathrm{~m} . \mathrm{s}- \) l, north. a) Calculate Daniel's velocity after the collision. b) Calculate the change in kinetic energy during the collision.

Ask by Wade Conner. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After the collision, Daniel moves south at 1/6 m/s. The kinetic energy decreases by 133⁄6 J during the collision.

Solución

Let's analyze the collision between Daniel and Lauren step by step. ### **Given:** - **Daniel:** - Mass (\( m_1 \)) = 60 kg - Initial velocity (\( v_{1i} \)) = \( +1 \, \text{m/s} \) (northwards) - **Lauren:** - Mass (\( m_2 \)) = 50 kg - Initial velocity (\( v_{2i} \)) = \( -0.6 \, \text{m/s} \) (southwards, since she's moving towards Daniel) - **After Collision:** - Lauren's velocity (\( v_{2f} \)) = \( +0.8 \, \text{m/s} \) (northwards) ### **a) Calculating Daniel's Velocity After the Collision (\( v_{1f} \)):** Since the ice is frictionless, **momentum is conserved** during the collision. The conservation of momentum equation is: \[ m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f} \] Plugging in the known values: \[ 60 \times 1 + 50 \times (-0.6) = 60 \times v_{1f} + 50 \times 0.8 \] \[ 60 - 30 = 60 v_{1f} + 40 \] \[ 30 = 60 v_{1f} + 40 \] \[ 60 v_{1f} = 30 - 40 = -10 \] \[ v_{1f} = \frac{-10}{60} = -\frac{1}{6} \, \text{m/s} \] **Interpretation:** Daniel's velocity after the collision is \( -\frac{1}{6} \, \text{m/s} \), which means he moves southwards at \( \frac{1}{6} \, \text{m/s} \). ### **b) Calculating the Change in Kinetic Energy (\( \Delta K \)):** **Initial Kinetic Energy (\( K_i \)):** \[ K_{1i} = \frac{1}{2} m_1 v_{1i}^2 = \frac{1}{2} \times 60 \times 1^2 = 30 \, \text{J} \] \[ K_{2i} = \frac{1}{2} m_2 v_{2i}^2 = \frac{1}{2} \times 50 \times (-0.6)^2 = 0.5 \times 50 \times 0.36 = 9 \, \text{J} \] \[ K_i = K_{1i} + K_{2i} = 30 + 9 = 39 \, \text{J} \] **Final Kinetic Energy (\( K_f \)):** \[ K_{1f} = \frac{1}{2} m_1 v_{1f}^2 = \frac{1}{2} \times 60 \times \left(-\frac{1}{6}\right)^2 = 30 \times \frac{1}{36} = \frac{5}{6} \, \text{J} \approx 0.833 \, \text{J} \] \[ K_{2f} = \frac{1}{2} m_2 v_{2f}^2 = \frac{1}{2} \times 50 \times 0.8^2 = 25 \times 0.64 = 16 \, \text{J} \] \[ K_f = K_{1f} + K_{2f} = \frac{5}{6} + 16 = \frac{101}{6} \, \text{J} \approx 16.833 \, \text{J} \] **Change in Kinetic Energy:** \[ \Delta K = K_f - K_i = \frac{101}{6} - 39 = \frac{101}{6} - \frac{234}{6} = -\frac{133}{6} \, \text{J} \approx -22.17 \, \text{J} \] **Interpretation:** The kinetic energy decreases by \( \frac{133}{6} \, \text{J} \) (approximately \( -22.17 \, \text{J} \)) during the collision. ### **Final Answers:** **a)** After the collision, Daniel’s velocity is –1⁄6 m s⁻¹ (i.e., 1/6 m/s south). **b)** The kinetic energy decreases by 133⁄6 J during the collision.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the problem, we can use the principles of conservation of momentum and the kinetic energy formulas. **a)** To find Daniel’s velocity after the collision, we first apply the conservation of momentum. The total momentum before the collision must equal the total momentum after the collision. The initial momentum of Daniel (P_D) is: \[ P_D = m_D \cdot v_D = 60 \, \text{kg} \cdot 1 \, \text{m/s} = 60 \, \text{kg m/s} \, \text{(north)} \] The initial momentum of Lauren (P_L) is: \[ P_L = m_L \cdot v_L = 50 \, \text{kg} \cdot (-0.6) \, \text{m/s} = -30 \, \text{kg m/s} \, \text{(south)} \] The total initial momentum (P_total_initial) is: \[ P_{\text{total initial}} = P_D + P_L = 60 - 30 = 30 \, \text{kg m/s} \] After the collision, the combined mass of Daniel and Lauren moving north at a velocity \( v_f \) is: \[ (m_D + m_L) \cdot v_f = 30 \, \text{kg m/s} \] \[ (60 \, \text{kg} + 50 \, \text{kg}) \cdot v_f = 30 \] \[ 110 \, \text{kg} \cdot v_f = 30 \] \[ v_f = \frac{30}{110} \approx 0.273 \, \text{m/s} \, \text{(north)} \] Thus, Daniel's velocity after the collision is approximately \( 0.273 \, \text{m/s} \, \text{(north)} \). **b)** To find the change in kinetic energy during the collision, we first calculate the initial and final kinetic energy. The initial kinetic energy (KE_initial) is the sum of Daniel's and Lauren's kinetic energies: \[ KE_D = \frac{1}{2} m_D v_D^2 = \frac{1}{2} \cdot 60 \cdot (1^2) = 30 \, \text{J} \] \[ KE_L = \frac{1}{2} m_L v_L^2 = \frac{1}{2} \cdot 50 \cdot (0.6^2) = 9 \, \text{J} \] \[ KE_{\text{initial}} = KE_D + KE_L = 30 + 9 = 39 \, \text{J} \] The final kinetic energy (KE_final) after the collision with both moving at \( 0.8 \, \text{m/s} \) north is: \[ KE_{\text{final}} = \frac{1}{2} (m_D + m_L) v_f^2 = \frac{1}{2} \cdot 110 \cdot (0.8^2) \] \[ KE_{\text{final}} = \frac{1}{2} \cdot 110 \cdot 0.64 = 35.2 \, \text{J} \] Now, we find the change in kinetic energy: \[ \Delta KE = KE_{\text{final}} - KE_{\text{initial}} = 35.2 \, \text{J} - 39 \, \text{J} = -3.8 \, \text{J} \] Thus, the change in kinetic energy during the collision is \( -3.8 \, \text{J} \), indicating that kinetic energy was lost in the collision, which is expected in an inelastic collision.

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad