Pregunta
upstudy study bank question image url

Order the numbers from least to greatest. and sleth your numbcr lines \( \begin{array}{l}\text { 13. } \sqrt{99}, \pi^{2}, 9 . \overline{8} \frac{7}{2}, 9 . \overline{8} \sqrt{99} \\ \text { ESSENTIALQUESTION } \\ \text { 14. } \sqrt{\frac{1}{25}}, \frac{1}{4}, 0 . \overline{2} \sqrt{\frac{1}{2}}, 0 . \overline{2}, \frac{1}{4} \\ \text { 15. How are real numbers used to describe real-world situations? }\end{array} \)

Ask by Campos Lawson. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 13:** Order the numbers from least to greatest: - \(\pi^{2}\) - \(\sqrt{99}\) - \(9.\overline{8} \times \frac{7}{2}\) - \(9.\overline{8} \times \sqrt{99}\) **Order:** \(\pi^{2}\), \(\sqrt{99}\), \(9.\overline{8} \times \frac{7}{2}\), \(9.\overline{8} \times \sqrt{99}\) **Problem 14:** Order the numbers from least to greatest: - \(\sqrt{\frac{1}{25}}\) - \(\frac{1}{4}\) - \(0.\overline{2} \times \sqrt{\frac{1}{2}}\) - \(0.\overline{2}\) - \(\frac{1}{4}\) **Order:** \(0.\overline{2} \times \sqrt{\frac{1}{2}}\), \(\sqrt{\frac{1}{25}}\), \(0.\overline{2}\), \(\frac{1}{4}\), \(\frac{1}{4}\) **Problem 15:** Real numbers are used to measure quantities like length, mass, and time; in finance for prices and interest rates; in engineering for precise calculations; in technology for data processing; in everyday activities like cooking and shopping; in statistics for data analysis; and in navigation for mapping coordinates.

Solución

Certainly! Let's tackle each of your questions step-by-step. --- ### **Problem 13** **Order the numbers from least to greatest:** \[ \sqrt{99},\ \pi^{2},\ 9.\overline{8} \times \frac{7}{2},\ 9.\overline{8} \times \sqrt{99} \] **Step 1: Calculate or Approximate Each Value** 1. **\(\sqrt{99}\)** \[ \sqrt{99} \approx 9.9499 \] 2. **\(\pi^{2}\)** \[ \pi^{2} \approx 3.1416^{2} \approx 9.8696 \] 3. **\(9.\overline{8} \times \frac{7}{2}\)** \[ 9.\overline{8} = 9.8888\ldots \\ 9.8888 \times 3.5 = 34.6111\ldots \] 4. **\(9.\overline{8} \times \sqrt{99}\)** \[ 9.8888 \times 9.9499 \approx 98.4375 \] **Step 2: Order the Numbers** Based on the approximations: \[ \pi^{2} \approx 9.8696 < \sqrt{99} \approx 9.9499 < 34.6111 < 98.4375 \] **Final Order (Least to Greatest):** \[ \pi^{2},\ \sqrt{99},\ 9.\overline{8} \times \frac{7}{2},\ 9.\overline{8} \times \sqrt{99} \] --- ### **Problem 14** **Order the numbers from least to greatest:** \[ \sqrt{\frac{1}{25}},\ \frac{1}{4},\ 0.\overline{2} \times \sqrt{\frac{1}{2}},\ 0.\overline{2},\ \frac{1}{4} \] **Step 1: Calculate or Approximate Each Value** 1. **\(\sqrt{\frac{1}{25}}\)** \[ \sqrt{\frac{1}{25}} = \frac{1}{5} = 0.2 \] 2. **\(\frac{1}{4}\)** \[ \frac{1}{4} = 0.25 \] 3. **\(0.\overline{2} \times \sqrt{\frac{1}{2}}\)** \[ 0.\overline{2} = 0.2222\ldots \\ \sqrt{\frac{1}{2}} \approx 0.7071 \\ 0.2222 \times 0.7071 \approx 0.1571 \] 4. **\(0.\overline{2}\)** \[ 0.\overline{2} = 0.2222\ldots \] 5. **\(\frac{1}{4}\)** \[ \frac{1}{4} = 0.25 \] **Step 2: Order the Numbers** Based on the approximations: \[ 0.1571 < 0.2 < 0.2222\ldots < 0.25 = 0.25 \] **Final Order (Least to Greatest):** \[ 0.\overline{2} \times \sqrt{\frac{1}{2}},\ \sqrt{\frac{1}{25}},\ 0.\overline{2},\ \frac{1}{4},\ \frac{1}{4} \] --- ### **Problem 15** **How are real numbers used to describe real-world situations?** Real numbers are fundamental in representing and modeling various aspects of the real world. Here's how they are utilized: 1. **Measurement**: Quantities such as length, mass, time, temperature, and volume are expressed using real numbers. For example, a room might be 12.5 meters long, and water might be heated to 75.3°C. 2. **Finance**: Transactions involve real numbers in the form of prices, interest rates, budgets, and expenses. For instance, purchasing an item for \$19.99 or calculating interest at a rate of 3.5%. 3. **Engineering and Science**: Precise calculations in engineering designs, physics experiments, and chemical compositions rely on real numbers to ensure accuracy and functionality. 4. **Technology**: Digital systems use real numbers to process and represent data, such as in graphics rendering, signal processing, and statistical analyses. 5. **Everyday Activities**: Real numbers help in everyday tasks like cooking (measuring ingredients), shopping (calculating discounts), and scheduling (keeping track of time). 6. **Statistics and Data Analysis**: Real numbers are essential for analyzing data, understanding trends, and making informed decisions based on numerical information. 7. **Navigation and Mapping**: Coordinates on maps are represented using real numbers to specify precise locations on Earth. In essence, real numbers provide a versatile and precise language that allows us to quantify, analyze, and navigate the myriad phenomena in our daily lives and the broader universe. --- If you need further clarification or assistance with any of these problems, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To order the numbers, let’s first evaluate them: For question 13: 1. \( \sqrt{99} \approx 9.95 \) 2. \( \pi^{2} \approx 9.87 \) 3. \( 9.\overline{8} = 9.8888...\) (which can also be seen as close to 10) 4. \( \frac{7}{2} = 3.5 \) 5. \( 9.\overline{8} \sqrt{99} \approx 9.95 \cdot 9.8888... \approx 98.52 \) So ordering from least to greatest gives: \( \frac{7}{2}, \sqrt{99}, \pi^{2}, 9.\overline{8}, 9.\overline{8} \sqrt{99} \) For question 14: 1. \( \sqrt{\frac{1}{25}} = \frac{1}{5} = 0.2 \) 2. \( \frac{1}{4} = 0.25 \) 3. \( 0.\overline{2} = 0.2222... \) 4. \( 0 .\overline{2} \sqrt{\frac{1}{2}} \approx 0.22 \times 0.707 \approx 0.155 \) Ordering from least to greatest: \( 0 .\overline{2} \sqrt{\frac{1}{2}}, \sqrt{\frac{1}{25}}, 0 .\overline{2}, \frac{1}{4} \) Now for the last part of question 15: Real numbers describe real-world situations by enabling us to quantify and make sense of various phenomena. For example, they are used in finance to calculate profits, in science to measure distances, and in statistics to analyze data trends. Each real number represents a magnitude, allowing us to make informed decisions based on numerical evidence!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad