QUESTION 3 Suppose the functions \( f, g, h \) and \( l \) are defined as follows: \[ \begin{aligned} f(x)=4 x^{2}-5 x+1 \\ g(x)=2 \sqrt{2-\frac{x}{2}}-x\end{aligned} \] \[ \begin{aligned} h(x) & =-\frac{1}{2} x+3 \\ l(x) & =\log _{4}(x+3)-\log _{4}(x-2)\end{aligned} \] Write down \( D_{f} \) and solve the inequality \( f(x) \leq 0 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find \( D_f \), we first look at the function \( f(x) = 4x^2 - 5x + 1 \). Since this is a polynomial, its domain is the entire set of real numbers, so we can say \( D_f = \mathbb{R} \). Next, we solve the inequality \( f(x) \leq 0 \). To do this, we first need to find the roots of the equation \( 4x^2 - 5x + 1 = 0 \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 4 \cdot 1}}{2 \cdot 4} = \frac{5 \pm \sqrt{25 - 16}}{8} = \frac{5 \pm 3}{8} \] This gives us the roots: 1. \( x_1 = \frac{8}{8} = 1 \) 2. \( x_2 = \frac{2}{8} = \frac{1}{4} \) Next, we analyze the sign of the quadratic function \( f(x) \). The parabola opens upwards (since the coefficient of \( x^2 \) is positive). Therefore, \( f(x) \) is less than or equal to zero between the roots: \[ \frac{1}{4} \leq x \leq 1 \] Thus, the solution to the inequality \( f(x) \leq 0 \) is: \[ \boxed{\left[\frac{1}{4}, 1\right]} \]