Simplify. Assume \( z \) is greater than or equal to zero. \( 2 \sqrt{50 z^{7}} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To simplify \( 2 \sqrt{50 z^{7}} \), first, break down the square root: \[ \sqrt{50 z^{7}} = \sqrt{50} \cdot \sqrt{z^{7}}. \] Next, simplify \( \sqrt{50} \). We can express 50 as \( 25 \cdot 2 \): \[ \sqrt{50} = \sqrt{25 \cdot 2} = \sqrt{25} \cdot \sqrt{2} = 5 \sqrt{2}. \] Now simplify \( \sqrt{z^{7}} \): \[ \sqrt{z^{7}} = \sqrt{z^{6} \cdot z} = \sqrt{z^{6}} \cdot \sqrt{z} = z^{3} \sqrt{z}. \] Combining these results gives us: \[ \sqrt{50 z^{7}} = 5 \sqrt{2} \cdot z^{3} \sqrt{z} = 5 z^{3} \sqrt{2z}. \] Finally, include the factor of 2 from the original expression: \[ 2 \sqrt{50 z^{7}} = 2 \cdot 5 z^{3} \sqrt{2z} = 10 z^{3} \sqrt{2z}. \] So the simplified expression is: \[ \boxed{10 z^{3} \sqrt{2z}}. \]