1. The graph of \( f(x)=\sqrt{x} \) was transformed to create the graph of \( g(x)=-\sqrt{x-2}+1 \). What transformations took place to create the new graph?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To transform the graph of \( f(x) = \sqrt{x} \) into \( g(x) = -\sqrt{x-2} + 1 \), several key changes occurred. First, the \( -\sqrt{x} \) reflects the graph vertically across the x-axis, flipping it upside down. Then, the \( \sqrt{x-2} \) indicates a horizontal shift to the right by 2 units, as the graph moves away from the y-axis. Finally, the \( +1 \) represents a vertical shift upward by 1 unit, raising the entire graph on the y-axis. So, summarizing the transformations, the graph of \( f(x) \) was reflected vertically, shifted 2 units to the right, and then shifted up 1 unit to create the graph of \( g(x) \). It's like giving your graph a little makeover, with a twist at the end!