a) \( 2 \sin \alpha \sin 2 \alpha \sin 3 \alpha \) b) \( 4 \sin 25^{\circ} \cos 15^{\circ} \sin 5^{\circ} \) c) \( 8 \cos 1^{\circ} \cos 2^{\circ} \cos 4^{\circ} \cos 8^{\circ} \) d) \( \cos \alpha \cos (\alpha+2) \) e) \( 8 \cos (\alpha-\beta) \cos (\alpha-\gamma) \cos (\gamma-\beta) \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
The expression \( 2 \sin \alpha \sin 2 \alpha \sin 3 \alpha \) can be simplified using the product-to-sum identities, which can turn products of sine functions into sums or differences, making it easier to integrate, differentiate, or solve equations involving these trigonometric functions. For \( 8 \cos (\alpha-\beta) \cos (\alpha-\gamma) \cos (\gamma-\beta) \), this expression is closely related to the cosine of angles formed by the differences between angles. It's particularly useful in the context of geometry, where these types of cosine products can represent relationships in triangle properties, especially in the formulation of laws such as the Law of Cosines.