Find the partial derivative of the function with respect to each of the independent variables. \( f(x, y)=\sin ^{2}\left(4 x y^{2}-y\right) \) A. \( \frac{\partial f}{\partial x}=8 y^{2} \sin \left(4 x y^{2}-y\right) \cos \left(4 x y^{2}-y\right) ; \frac{\partial f}{\partial y}=2 \sin \left(4 x y^{2}-y\right) \cos \left(4 x y^{2}-y\right) \) B. \( \frac{\partial f}{\partial x}=2 \sin \left(4 x y^{2}-y\right) \cos \left(4 x y^{2}-y\right) ; \frac{\partial f}{\partial y}=(16 x-2) \sin \left(4 x y^{2}-y\right) \cos \left(4 x y^{2}-y\right) \) \( \frac{\partial f}{\partial x}=2 \sin \left(4 x y^{2}-y\right) \cos \left(4 x y^{2}-y\right) ; \) \( \frac{\partial f}{\partial y}=2 \sin \left(4 x y^{2}-y\right) \cos \left(4 x y^{2}-y\right) \) D. \( \frac{\partial f}{\partial x}=8 y^{2} \sin \left(4 x y^{2}-y\right) \cos \left(4 x y^{2}-y\right) ; \) \( \frac{\partial f}{\partial y}=(16 x y-2) \sin \left(4 x y^{2}-y\right) \cos \left(4 x y^{2}-y\right) \)
Solución ThothAI de Upstudy
Respuesta rápida
Solución paso a paso
Introduce tu pregunta aquí…