Q:
ind from the first principles, the gradie
functions of the following curves
\( y=5 x+4 \quad y=x^{3}+x^{7} \)
Q:
\begin{tabular}{l} Question \\ Consider the function \( f(x) \) below. Over what open interval(s) is the function decreasing and concave up? Give your answer \\ in interval notation. \\ \( \qquad f(x)=\frac{x^{4}}{4}+\frac{13 x^{3}}{3}+20 x^{2}+36 x-6 \) \\ Enter \( \varnothing \) if the interval does not exist. \\ Provide your answer below: \\ \hline\end{tabular}
Q:
nd from the first principles, the gradi
functions of the following curves
\( y=3 x+4 \)
Q:
Find from the first principles, the gradi
functions of the following curves
\( y=3 x+4 \)
\( y=x^{3}+x^{2} \)
Q:
a) \( \int \frac{2 d x}{\sqrt{4-9 x^{2}}}= \)
Q:
\( \frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y=t^{3}+t^{2}+3 \begin{aligned} \text { when } t & =0 \\ y & =0 \\ \Delta y & (0)=0\end{aligned} \quad \begin{aligned} \frac{d y}{d t} & =1\end{aligned} \)
Q:
\( \left. \begin{array} { l } { 100 \frac { d ^ { 2 } y ( t ) } { d t ^ { 2 } } + 5 \frac { d y ( t ) } { d t } + 4 y ( t ) = \frac { d x ( t ) } { d t } } \end{array} \right. \)
Q:
2. Hellar si \( f(x)=\left\{\begin{array}{l}\frac{3 a x^{2}-4}{4 x-7} \\ 4 x \text { si } x \geq 2 \\ 4 x<2\end{array}\right. \)
calcular valar de a el \( \lim _{x \rightarrow 2} f(x) \)
poro que exista.
Q:
ของ \( \lim _{x \rightarrow 2}\left(x^{2}+8 x-7\right) \)
Q:
\( \int _ { 0 } ^ { i } ( z - 1 ) e ^ { - z } d z = \)
Pon a prueba tus conocimientos sobre Cálculo!
Seleccione la respuesta correcta y verifique su respuesta
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar