Q:
A town has a population of 14000 and grows at \( 3.5 \% \) every year. What will be the population
after 14 years, to the nearest whole number?
Q:
2. Smallville has a population of 10,000 and is growing \( 14.7 \% \) each \( y \)
a: Write an explicit equation
b. What will the population be in 5 years?
Q:
A town has a population of 10000 and grows at \( 5 \% \) every year. What will be the population after
5 years, to the nearest whole number?
Q:
Una merce viene trasportata dal magazzino del
venditore a quelio del compratore subendo un
calo pari al \( 15 \% \) del peso alla partenza.
La merce arrivata a destinazione pesa \( 40,8 \mathrm{~kg} \).
Calcola il peso alla partenza.
Q:
solve
\( 4^{5 / 2} \)
Q:
\( \frac{1}{3}-\frac{1}{9}+\frac{1}{27}-\frac{1}{81}+\frac{1}{243}-\frac{1}{729} \)
We can write the sum as \( \sum_{i=1}^{6} \square \).
Q:
Evaluate the expression.
\( \frac{(n-4)!}{(n-2)!}=\square \)
Q:
Expenses for a company for year 1 are \( \$ 50,000 \). Every year thereafter, expenses increase by \( \$ 1000 \) plus \( 3 \% \) of the cost of the prior year. Let \( a_{1} \) represent the
original cost for year 1 ; that is, \( a_{1}=50,000 \).
Use a recursive formula to find the cost \( a_{n} \) in terms of \( a_{n-1} \) for each subsequent year, \( n \geq 2 \).
Q:
solve
\( 16^{1 / 4} \)
Q:
12. Extre factores y reduce las siguientes expresiones.
\( \begin{array}{ll}\text { a. } 7 \sqrt[3]{81}+5 \sqrt[3]{24}-2 \sqrt[3]{375} & \text { C. } 4 \sqrt{27}-7 \sqrt{12}-2 \sqrt{75} \\ \text { b. } 2 \sqrt{24}-5 \sqrt{54}+12 \sqrt{600} & \text { d. } \sqrt[3]{3}+\sqrt[3]{16}-2 \sqrt[3]{128}+3 \sqrt[3]{24}\end{array} \)
Pon a prueba tus conocimientos sobre Preálgebra!
Seleccione la respuesta correcta y verifique su respuesta
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar