Q:
2. (2.5 pts) Demuestra que para todo número natural \( n \),
\[ 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{n+1}} \geq \sqrt{n+1} \]
¿A partir de qué número \( n \) se empieza a cumplir la desigualdad estricta
\( > \), sin el igual?
Q:
Graph \( m(w)=-2 \cdot 2^{w} \)
Q:
Find the equation for the exponential function
that passes through the points \( (2,4) \) and \( (4,11) \).
Q:
Given two points for an exponential function,
1. Use the two points to find the growth rate, k . Write an exponential model for each point, then solve
this system of two equations for k .
2. Use either point with the k you found to find the initial amount at time zero, \( \mathrm{A}_{\mathrm{o}} \).
3. Doubling time is when the amount is \( 2^{*} \mathrm{~A}_{\mathrm{o}} \).
4. Use the values of k and \( \mathrm{A}_{\mathrm{o}} \) to calculate the amount for a given time or to find the time to reach a
specific amount in the future.
The count in a bacteria culture was 600 after 20 minutes and 1900 after 30 minutes. Assuming the count
grows exponentially. You may enter the exact value or round to 2 decimal places.
What was the initial size of the culture?
Find the doubling period.
Find the population after 105 minutes.
When will the population reach 14000 .
Q:
A wooden artifact from an ancient tomb contains 40 percent of the carbon-14 that is present in living trees.
How long ago, to the nearest year, was the artifact made? (The half-life of carbon-14 is 5730 years.)
years
Q:
2. Domonstre por indução matemática que, para todo intelro positivo \( n \), é válida a proprosição \( P(n) \) :
\( \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}} \)
Q:
2) \( f(x)=\frac{x^{2}+x}{3 x^{2}-12} \)
Q:
Evaluate or simplify the expression without using a calculator.
\( e^{\ln 3 x^{3}} \)
\( e^{\ln 3 x^{3}}=\square \)
Q:
Evaluate or simplify the expression without using a calculator.
\( e^{\ln 146} \)
Q:
27 Multiple Choice 1 point
Solve the problem.
The population of an animal species in a certain area is modeled by \( \mathbf{F}(\mathrm{t})=400 \mathrm{log}(2 t+3) \) where \( t \) is the time in months since the species was introduced to the area. Find the
population of this species in the area 6 months after the species is introduced.
74
704
240
Pon a prueba tus conocimientos sobre Precálculo!
Seleccione la respuesta correcta y verifique su respuesta
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar