girl-logo

Hacer preguntas

Precálculo preguntas y respuestas

Q:
2. (2.5 pts) Demuestra que para todo número natural \( n \), \[ 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{n+1}} \geq \sqrt{n+1} \] ¿A partir de qué número \( n \) se empieza a cumplir la desigualdad estricta \( > \), sin el igual?
Q:
Graph \( m(w)=-2 \cdot 2^{w} \)
Q:
Find the equation for the exponential function that passes through the points \( (2,4) \) and \( (4,11) \).
Q:
Given two points for an exponential function, 1. Use the two points to find the growth rate, k . Write an exponential model for each point, then solve this system of two equations for k . 2. Use either point with the k you found to find the initial amount at time zero, \( \mathrm{A}_{\mathrm{o}} \). 3. Doubling time is when the amount is \( 2^{*} \mathrm{~A}_{\mathrm{o}} \). 4. Use the values of k and \( \mathrm{A}_{\mathrm{o}} \) to calculate the amount for a given time or to find the time to reach a specific amount in the future. The count in a bacteria culture was 600 after 20 minutes and 1900 after 30 minutes. Assuming the count grows exponentially. You may enter the exact value or round to 2 decimal places. What was the initial size of the culture? Find the doubling period. Find the population after 105 minutes. When will the population reach 14000 .
Q:
A wooden artifact from an ancient tomb contains 40 percent of the carbon-14 that is present in living trees. How long ago, to the nearest year, was the artifact made? (The half-life of carbon-14 is 5730 years.) years
Q:
2. Domonstre por indução matemática que, para todo intelro positivo \( n \), é válida a proprosição \( P(n) \) : \( \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}} \)
Q:
2) \( f(x)=\frac{x^{2}+x}{3 x^{2}-12} \)
Q:
Evaluate or simplify the expression without using a calculator. \( e^{\ln 3 x^{3}} \) \( e^{\ln 3 x^{3}}=\square \)
Q:
Evaluate or simplify the expression without using a calculator. \( e^{\ln 146} \)
Q:
27 Multiple Choice 1 point Solve the problem. The population of an animal species in a certain area is modeled by \( \mathbf{F}(\mathrm{t})=400 \mathrm{log}(2 t+3) \) where \( t \) is the time in months since the species was introduced to the area. Find the population of this species in the area 6 months after the species is introduced. 74 704 240

Pon a prueba tus conocimientos sobre Precálculo!

Seleccione la respuesta correcta y verifique su respuesta

2 3 4 5 6 7 8 9 10 11
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto

Introduce tu pregunta aquí…

Por imagen
Volver a cargar
Archivos subidos
xxxx.png0%
Enviar
📸 EL ESTUDIO PUEDE SER UNA VERDADERA LUCHA
Por qué no UpStudy It?
Seleccione su plan a continuación
Prima

Puedes disfrutar

  • Paso a paso explicaciones
  • Experto 24/7 tutores en vivo
  • Ilimitado número de preguntas
  • Sin interrupciones
  • Acceso completo para responder y
    solución
  • Acceso completo para chat en PDF, chat en UpStudy, chat de navegación
Básico
  • Limitado Soluciones