Pre-calculus Questions from Nov 13,2024

Browse the Pre-calculus Q&A Archive for Nov 13,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
The domain of the function \( f(x) \) is \( [5,12] \) and the range is \( [-11,19] \). Using interval find the domain and range of \( g(x)=-f(x) \). 1) Let \( z e t \) find \( z^{3} \) in polar form. Graticar lafunción \( y=f(x)=3 x^{2}-5 x+2 \) 1. Esboce o gráfico das funções abaixo: a) \( y=2 x^{2}+4 x+4 \) \[ \text { Polynomial interpolation } \] ercise 1 Let's the function \( f(x)=\sqrt{x} \). 1. Estimate the value of \( f \) in the point 115 , by using Lagrange interpolation if the interpolation nodes are \( x_{0}=100, x_{1}=121, x_{2}=144 \). 2. Give a majorating of the committed error. 3 If \( f(x)=\log _{3} x \) and \( g(x) \) is the image of \( f(x) \) after a translation fiv units to the left, which equation represents \( g(x) \) ? \( \begin{array}{ll}\text { (1) } g(x)=\log _{3} x-5\end{array} \) 3.1. Find the binomial expansion of \( \left(x-\frac{1}{x}\right)^{5}, x \neq 0 \), simplifying each term of the expansion. 3.2. Given \( \frac{1}{(4-x)^{2}} \), 3.2.1. Expand it in ascending powers of \( x \) as far as the term in \( x^{2} \). 3.2.2. What are the limits of \( x \) for which the expansion in 3.2 .1 is true? 3.3.1. Expand the binomial \( \sqrt{225+15 x} \) as an infinite series, up to and including the term in \( x^{2} \). 3.3.2. By substituting \( x=1 \) in the expansion above, show that \( \sqrt{15} \approx \frac{1859}{480} \). 1. Soient \( (a, r) \in \mathbb{R} \times] 0,+\infty[ \). Traduire en termes d'intervalles les inégalités suivantes : \[ |x-a| \leq r, \quad|x-a|>r \] 2.4. Write the polar equation \( r=\cos \theta+\sin \theta \), in Cartesian form, and hence show that it represents a circle, further determining the coordinates of its centre and the size of its radius. \( \left\{ \begin{array} { l } { u _ { 0 } } \\ { u _ { n + 1 } = \frac { u _ { n } } { 2 } + 1 , \forall n \geq 0 } \end{array} \right. \)
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad