Home Math Solver
error msg
  • Algebra
  • Calculus
  • Trigonometry
  • Matrix
  • Differential
  • Integral
  • Trigonometry
  • Letters

Question

\frac{\tan\left(\theta \right)}{\sec\left(\theta \right)}=\sin\left(\theta \right)
Solve the equation
\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}
Alternative Form
\theta \neq 90^{\circ}+180^{\circ} k,k \in \mathbb{Z}
Evaluate
\frac{\tan\left(\theta \right)}{\sec\left(\theta \right)}=\sin\left(\theta \right)
Find the domain
More Steps Hide Steps
Evaluate
\left\{ \begin{array}{l}\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\\\sec\left(\theta \right)\neq 0\end{array}\right.
Calculate
\left\{ \begin{array}{l}\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\\\theta \in \mathbb{R}\end{array}\right.
Find the intersection
\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}
\frac{\tan\left(\theta \right)}{\sec\left(\theta \right)}=\sin\left(\theta \right),\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}
Rewrite the expression
\frac{\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}}{\frac{1}{\cos\left(\theta \right)}}=\sin\left(\theta \right)
Simplify the expression
\frac{\sin\left(\theta \right)\cos\left(\theta \right)}{\cos\left(\theta \right)}=\sin\left(\theta \right)
Simplify the expression
\sin\left(\theta \right)=\sin\left(\theta \right)
\text{The statement is true for any value of }\theta
\theta \in \mathbb{R}
Check if the solution is in the defined range
\theta \in \mathbb{R},\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}
Solution
\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}
Alternative Form
\theta \neq 90^{\circ}+180^{\circ} k,k \in \mathbb{Z}
Show Solutions
Hide Solutions
Verify the identity
\textrm{true}
Evaluate
\frac{\tan\left(\theta \right)}{\sec\left(\theta \right)}=\sin\left(\theta \right)
Start working on the left-hand side
More Steps Hide Steps
Evaluate
\frac{\tan\left(\theta \right)}{\sec\left(\theta \right)}
\text{Use }\tan t = \frac{\sin t}{\cos t}\text{ to transform the expression}
\frac{\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}}{\sec\left(\theta \right)}
Multiply by the reciprocal
\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}\times \frac{1}{\sec\left(\theta \right)}
Multiply the terms
\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)\sec\left(\theta \right)}
Transform the expression
More Steps Hide Steps
Evaluate
\cos\left(\theta \right)\sec\left(\theta \right)
\text{Use }\sec t = \frac{1}{\cos t}\text{ to transform the expression}
\cos\left(\theta \right)\times \frac{1}{\cos\left(\theta \right)}
\text{Cancel out the common factor }\cos\left(\theta \right)
1\times 1
Multiply the terms
1
\frac{\sin\left(\theta \right)}{1}
Divide the terms
\sin\left(\theta \right)
\sin\left(\theta \right)=\sin\left(\theta \right)
Solution
\textrm{true}
Show Solutions
Hide Solutions
Graph
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy