girl-logo

Ask Questions

Math Solver

\frac{x^2}{36}+\frac{y^2}{9} = 1
Question
\frac{x^{2}}{36}+\frac{y^{2}}{9}=1
Uh oh!
Identify the conic
\left(0,0\right)
Rewrite in standard form
\frac{x^{2}}{36}+\frac{y^{2}}{9}=1
Solution
\left(0,0\right)

Find the center of the ellipse

Find the foci of the ellipse

Find the vertices of the ellipse

Find the eccentricity of the ellipse

load more hide
Solve the equation
\begin{align}&x=2\sqrt{9-y^{2}}\\&x=-2\sqrt{9-y^{2}}\end{align}
Evaluate
\frac{x^{2}}{36}+\frac{y^{2}}{9}=1
Move the expression to the right-hand side and change its sign
\frac{x^{2}}{36}=1-\frac{y^{2}}{9}
Subtract the terms
More Steps Hide Steps
Evaluate
1-\frac{y^{2}}{9}
Reduce fractions to a common denominator
\frac{9}{9}-\frac{y^{2}}{9}
Write all numerators above the common denominator
\frac{9-y^{2}}{9}
\frac{x^{2}}{36}=\frac{9-y^{2}}{9}
\text{Multiply both sides of the equation by }36
\frac{x^{2}}{36}\times 36=\frac{9-y^{2}}{9}\times 36
Multiply the terms
x^{2}=\frac{\left(9-y^{2}\right)\times 36}{9}
Evaluate
x^{2}=36-4y^{2}
Take the root of both sides of the equation and remember to use both positive and negative roots
x=\pm \sqrt{36-4y^{2}}
Simplify the expression
More Steps Hide Steps
Evaluate
\sqrt{36-4y^{2}}
Factor the expression
\sqrt{4\left(9-y^{2}\right)}
The root of a product is equal to the product of the roots of each factor
\sqrt{4}\times \sqrt{9-y^{2}}
Evaluate the root
More Steps Hide Steps
Evaluate
\sqrt{4}
\text{Write the number in exponential form with the base of }2
\sqrt{2^{2}}
\text{Reduce the index of the radical and exponent with }2
2
2\sqrt{9-y^{2}}
x=\pm 2\sqrt{9-y^{2}}
Solution
\begin{align}&x=2\sqrt{9-y^{2}}\\&x=-2\sqrt{9-y^{2}}\end{align}

\text{Solve for }x

\text{Solve for }y

Testing for symmetry
\textrm{Symmetry with respect to the origin}
Evaluate
\frac{x^{2}}{36}+\frac{y^{2}}{9}=1
\text{To test if the graph of }\frac{x^{2}}{36}+\frac{y^{2}}{9}=1\text{ is symmetry with respect to the origin,substitute -x for x and -y for y}
\frac{\left(-x\right)^{2}}{36}+\frac{\left(-y\right)^{2}}{9}=1
Evaluate
More Steps Hide Steps
Evaluate
\frac{\left(-x\right)^{2}}{36}+\frac{\left(-y\right)^{2}}{9}
Rewrite the expression
\frac{x^{2}}{36}+\frac{y^{2}}{9}
Reduce fractions to a common denominator
\frac{x^{2}}{36}+\frac{y^{2}\times 4}{9\times 4}
Multiply the numbers
\frac{x^{2}}{36}+\frac{y^{2}\times 4}{36}
Write all numerators above the common denominator
\frac{x^{2}+y^{2}\times 4}{36}
Use the commutative property to reorder the terms
\frac{x^{2}+4y^{2}}{36}
\frac{x^{2}+4y^{2}}{36}=1
Solution
\textrm{Symmetry with respect to the origin}

Testing for symmetry about the origin

Testing for symmetry about the x-axis

Testing for symmetry about the y-axis

Find the first derivative
\frac{dy}{dx}=-\frac{x}{4y}
Calculate
\frac{x^{2}}{36}+\frac{y^{2}}{9}=1
Take the derivative of both sides
\frac{d}{dx}\left(\frac{x^{2}}{36}+\frac{y^{2}}{9}\right)=\frac{d}{dx}\left(1\right)
Calculate the derivative
More Steps Hide Steps
Evaluate
\frac{d}{dx}\left(\frac{x^{2}}{36}+\frac{y^{2}}{9}\right)
Use differentiation rules
\frac{d}{dx}\left(\frac{x^{2}}{36}\right)+\frac{d}{dx}\left(\frac{y^{2}}{9}\right)
Evaluate the derivative
More Steps Hide Steps
Evaluate
\frac{d}{dx}\left(\frac{x^{2}}{36}\right)
Rewrite the expression
\frac{\frac{d}{dx}\left(x^{2}\right)}{36}
\text{Use }\frac{d}{dx} x^{n}=n x^{n-1}\text{ to find derivative}
\frac{2x}{36}
Calculate
\frac{x}{18}
\frac{x}{18}+\frac{d}{dx}\left(\frac{y^{2}}{9}\right)
Evaluate the derivative
More Steps Hide Steps
Evaluate
\frac{d}{dx}\left(\frac{y^{2}}{9}\right)
Rewrite the expression
\frac{\frac{d}{dx}\left(y^{2}\right)}{9}
Evaluate the derivative
\frac{2y\frac{dy}{dx}}{9}
\frac{x}{18}+\frac{2y\frac{dy}{dx}}{9}
Calculate
\frac{x+4y\frac{dy}{dx}}{18}
\frac{x+4y\frac{dy}{dx}}{18}=\frac{d}{dx}\left(1\right)
Calculate the derivative
\frac{x+4y\frac{dy}{dx}}{18}=0
Simplify
x+4y\frac{dy}{dx}=0
Move the constant to the right side
4y\frac{dy}{dx}=0-x
Removing 0 doesn't change the value,so remove it from the expression
4y\frac{dy}{dx}=-x
Divide both sides
\frac{4y\frac{dy}{dx}}{4y}=\frac{-x}{4y}
Divide the numbers
\frac{dy}{dx}=\frac{-x}{4y}
Solution
\frac{dy}{dx}=-\frac{x}{4y}

\text{Find the derivative with respect to }x

\text{Find the derivative with respect to }y

Find the second derivative
\frac{d^2y}{dx^2}=-\frac{4y^{2}+x^{2}}{16y^{3}}
Calculate
\frac{x^{2}}{36}+\frac{y^{2}}{9}=1
Take the derivative of both sides
\frac{d}{dx}\left(\frac{x^{2}}{36}+\frac{y^{2}}{9}\right)=\frac{d}{dx}\left(1\right)
Calculate the derivative
More Steps Hide Steps
Evaluate
\frac{d}{dx}\left(\frac{x^{2}}{36}+\frac{y^{2}}{9}\right)
Use differentiation rules
\frac{d}{dx}\left(\frac{x^{2}}{36}\right)+\frac{d}{dx}\left(\frac{y^{2}}{9}\right)
Evaluate the derivative
More Steps Hide Steps
Evaluate
\frac{d}{dx}\left(\frac{x^{2}}{36}\right)
Rewrite the expression
\frac{\frac{d}{dx}\left(x^{2}\right)}{36}
\text{Use }\frac{d}{dx} x^{n}=n x^{n-1}\text{ to find derivative}
\frac{2x}{36}
Calculate
\frac{x}{18}
\frac{x}{18}+\frac{d}{dx}\left(\frac{y^{2}}{9}\right)
Evaluate the derivative
More Steps Hide Steps
Evaluate
\frac{d}{dx}\left(\frac{y^{2}}{9}\right)
Rewrite the expression
\frac{\frac{d}{dx}\left(y^{2}\right)}{9}
Evaluate the derivative
\frac{2y\frac{dy}{dx}}{9}
\frac{x}{18}+\frac{2y\frac{dy}{dx}}{9}
Calculate
\frac{x+4y\frac{dy}{dx}}{18}
\frac{x+4y\frac{dy}{dx}}{18}=\frac{d}{dx}\left(1\right)
Calculate the derivative
\frac{x+4y\frac{dy}{dx}}{18}=0
Simplify
x+4y\frac{dy}{dx}=0
Move the constant to the right side
4y\frac{dy}{dx}=0-x
Removing 0 doesn't change the value,so remove it from the expression
4y\frac{dy}{dx}=-x
Divide both sides
\frac{4y\frac{dy}{dx}}{4y}=\frac{-x}{4y}
Divide the numbers
\frac{dy}{dx}=\frac{-x}{4y}
\text{Use }\frac{-a}{b}=\frac{a}{-b}=-\frac{a}{b}\text{ to rewrite the fraction}
\frac{dy}{dx}=-\frac{x}{4y}
Take the derivative of both sides
\frac{d}{dx}\left(\frac{dy}{dx}\right)=\frac{d}{dx}\left(-\frac{x}{4y}\right)
Calculate the derivative
\frac{d^2y}{dx^2}=\frac{d}{dx}\left(-\frac{x}{4y}\right)
Use differentiation rules
\frac{d^2y}{dx^2}=-\frac{\frac{d}{dx}\left(x\right)\times 4y-x\times \frac{d}{dx}\left(4y\right)}{\left(4y\right)^{2}}
\text{Use }\frac{d}{dx} x^{n}=n x^{n-1}\text{ to find derivative}
\frac{d^2y}{dx^2}=-\frac{1\times 4y-x\times \frac{d}{dx}\left(4y\right)}{\left(4y\right)^{2}}
Calculate the derivative
More Steps Hide Steps
Evaluate
\frac{d}{dx}\left(4y\right)
Simplify
4\times \frac{d}{dx}\left(y\right)
Calculate
4\frac{dy}{dx}
\frac{d^2y}{dx^2}=-\frac{1\times 4y-x\times 4\frac{dy}{dx}}{\left(4y\right)^{2}}
Any expression multiplied by 1 remains the same
\frac{d^2y}{dx^2}=-\frac{4y-x\times 4\frac{dy}{dx}}{\left(4y\right)^{2}}
Use the commutative property to reorder the terms
\frac{d^2y}{dx^2}=-\frac{4y-4x\frac{dy}{dx}}{\left(4y\right)^{2}}
Calculate
More Steps Hide Steps
Evaluate
\left(4y\right)^{2}
Evaluate the power
4^{2}y^{2}
Evaluate the power
16y^{2}
\frac{d^2y}{dx^2}=-\frac{4y-4x\frac{dy}{dx}}{16y^{2}}
Calculate
\frac{d^2y}{dx^2}=-\frac{y-x\frac{dy}{dx}}{4y^{2}}
\text{Use equation }\frac{dy}{dx}=-\frac{x}{4y}\text{ to substitute}
\frac{d^2y}{dx^2}=-\frac{y-x\left(-\frac{x}{4y}\right)}{4y^{2}}
Solution
More Steps Hide Steps
Calculate
-\frac{y-x\left(-\frac{x}{4y}\right)}{4y^{2}}
Multiply the terms
More Steps Hide Steps
Evaluate
x\left(-\frac{x}{4y}\right)
Multiplying or dividing an odd number of negative terms equals a negative
-x\times \frac{x}{4y}
Multiply the terms
-\frac{x\times x}{4y}
Multiply the terms
-\frac{x^{2}}{4y}
-\frac{y-\left(-\frac{x^{2}}{4y}\right)}{4y^{2}}
Subtract the terms
More Steps Hide Steps
Simplify
y-\left(-\frac{x^{2}}{4y}\right)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
y+\frac{x^{2}}{4y}
Reduce fractions to a common denominator
\frac{y\times 4y}{4y}+\frac{x^{2}}{4y}
Write all numerators above the common denominator
\frac{y\times 4y+x^{2}}{4y}
Multiply the terms
\frac{4y^{2}+x^{2}}{4y}
-\frac{\frac{4y^{2}+x^{2}}{4y}}{4y^{2}}
Divide the terms
More Steps Hide Steps
Evaluate
\frac{\frac{4y^{2}+x^{2}}{4y}}{4y^{2}}
Multiply by the reciprocal
\frac{4y^{2}+x^{2}}{4y}\times \frac{1}{4y^{2}}
Multiply the terms
\frac{4y^{2}+x^{2}}{4y\times 4y^{2}}
Multiply the terms
\frac{4y^{2}+x^{2}}{16y^{3}}
-\frac{4y^{2}+x^{2}}{16y^{3}}
\frac{d^2y}{dx^2}=-\frac{4y^{2}+x^{2}}{16y^{3}}

\text{Find the second derivative with respect to }x

\text{Find the second derivative with respect to }y

Rewrite the equation
\begin{align}&r=\frac{6\sqrt{1+3\sin^{2}\left(\theta \right)}}{1+3\sin^{2}\left(\theta \right)}\\&r=-\frac{6\sqrt{1+3\sin^{2}\left(\theta \right)}}{1+3\sin^{2}\left(\theta \right)}\end{align}
Evaluate
\frac{x^{2}}{36}+\frac{y^{2}}{9}=1
Multiply both sides of the equation by LCD
\left(\frac{x^{2}}{36}+\frac{y^{2}}{9}\right)\times 36=1\times 36
Simplify the equation
More Steps Hide Steps
Evaluate
\left(\frac{x^{2}}{36}+\frac{y^{2}}{9}\right)\times 36
Apply the distributive property
\frac{x^{2}}{36}\times 36+\frac{y^{2}}{9}\times 36
Simplify
x^{2}+y^{2}\times 4
Use the commutative property to reorder the terms
x^{2}+4y^{2}
x^{2}+4y^{2}=1\times 36
Any expression multiplied by 1 remains the same
x^{2}+4y^{2}=36
\text{To convert the equation to polar coordinates,substitute }x\text{ for }r\cos\left(\theta \right)\text{ and }y\text{ for }r\sin\left(\theta \right)
\left(\cos\left(\theta \right)\times r\right)^{2}+4\left(\sin\left(\theta \right)\times r\right)^{2}=36
Factor the expression
\left(\cos^{2}\left(\theta \right)+4\sin^{2}\left(\theta \right)\right)r^{2}=36
Simplify the expression
\left(-3\cos^{2}\left(\theta \right)+4\right)r^{2}=36
Divide the terms
r^{2}=\frac{36}{-3\cos^{2}\left(\theta \right)+4}
Simplify the expression
r^{2}=\frac{36}{1+3\sin^{2}\left(\theta \right)}
Evaluate the power
r=\pm \sqrt{\frac{36}{1+3\sin^{2}\left(\theta \right)}}
Simplify the expression
More Steps Hide Steps
Evaluate
\sqrt{\frac{36}{1+3\sin^{2}\left(\theta \right)}}
To take a root of a fraction,take the root of the numerator and denominator separately
\frac{\sqrt{36}}{\sqrt{1+3\sin^{2}\left(\theta \right)}}
Simplify the radical expression
More Steps Hide Steps
Evaluate
\sqrt{36}
\text{Write the number in exponential form with the base of }6
\sqrt{6^{2}}
\text{Reduce the index of the radical and exponent with }2
6
\frac{6}{\sqrt{1+3\sin^{2}\left(\theta \right)}}
Multiply by the Conjugate
\frac{6\sqrt{1+3\sin^{2}\left(\theta \right)}}{\sqrt{1+3\sin^{2}\left(\theta \right)}\times \sqrt{1+3\sin^{2}\left(\theta \right)}}
Calculate
\frac{6\sqrt{1+3\sin^{2}\left(\theta \right)}}{1+3\sin^{2}\left(\theta \right)}
r=\pm \frac{6\sqrt{1+3\sin^{2}\left(\theta \right)}}{1+3\sin^{2}\left(\theta \right)}
Solution
\begin{align}&r=\frac{6\sqrt{1+3\sin^{2}\left(\theta \right)}}{1+3\sin^{2}\left(\theta \right)}\\&r=-\frac{6\sqrt{1+3\sin^{2}\left(\theta \right)}}{1+3\sin^{2}\left(\theta \right)}\end{align}
Graph

Still have questions?
Ask UpStudy online

  • 24/7 expert live tutors

  • Unlimited numbers of questions

  • Step-by-step explanations

📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions