Answer
Keiko will earn an annual rate of return of **6.00%** on her investment of \$3,600.00 over 17 years.
Solution
To find the annual rate of return for each investment choice, we can use the formula for compound interest:
\[
A = P(1 + r)^t
\]
Where:
- \( A \) is the amount of money accumulated after n years, including interest.
- \( P \) is the principal amount (the initial amount of money).
- \( r \) is the annual interest rate (decimal).
- \( t \) is the time the money is invested for in years.
We can rearrange this formula to solve for \( r \):
\[
r = \left( \frac{A}{P} \right)^{\frac{1}{t}} - 1
\]
Now, let's calculate the annual rate of return for each investment choice step by step.
### a. Investment of \( \$ 450.00 \) to receive \( \$ 746.23 \) in 11 years
1. \( P = 450 \)
2. \( A = 746.23 \)
3. \( t = 11 \)
Now, we can calculate \( r \):
\[
r = \left( \frac{746.23}{450} \right)^{\frac{1}{11}} - 1
\]
### b. Investment of \( \$ 3,600.00 \) to receive \( \$ 10,465.82 \) in 17 years
1. \( P = 3600 \)
2. \( A = 10465.82 \)
3. \( t = 17 \)
Now, we can calculate \( r \):
\[
r = \left( \frac{10465.82}{3600} \right)^{\frac{1}{17}} - 1
\]
### c. Investment of \( \$ 32,914.85 \) to receive \( \$ 120,000.00 \) in 20 years
1. \( P = 32914.85 \)
2. \( A = 120000 \)
3. \( t = 20 \)
Now, we can calculate \( r \):
\[
r = \left( \frac{120000}{32914.85} \right)^{\frac{1}{20}} - 1
\]
### d. Investment of \( \$ 33,619.78 \) to receive \( \$ 1,300,000.00 \) in 40 years
1. \( P = 33619.78 \)
2. \( A = 1300000 \)
3. \( t = 40 \)
Now, we can calculate \( r \):
\[
r = \left( \frac{1300000}{33619.78} \right)^{\frac{1}{40}} - 1
\]
Now, I will calculate the values of \( r \) for all four investments.
Calculate the value by following steps:
- step0: Calculate:
\(\left(\frac{120000}{32914.85}\right)^{\frac{1}{20}}-1\)
- step1: Divide the numbers:
\(\left(\frac{2400000}{658297}\right)^{\frac{1}{20}}-1\)
- step2: Rewrite the expression:
\(\frac{2400000^{\frac{1}{20}}}{658297^{\frac{1}{20}}}-1\)
- step3: Calculate:
\(\frac{2400000^{\frac{1}{20}}\times 658297^{\frac{19}{20}}}{658297}-1\)
- step4: Reduce fractions to a common denominator:
\(\frac{2400000^{\frac{1}{20}}\times 658297^{\frac{19}{20}}}{658297}-\frac{658297}{658297}\)
- step5: Transform the expression:
\(\frac{2400000^{\frac{1}{20}}\times 658297^{\frac{19}{20}}-658297}{658297}\)
- step6: Simplify:
\(\frac{\sqrt[20]{2400000}\times \sqrt[20]{658297^{19}}-658297}{658297}\)
- step7: Expand the expression:
\(\frac{\sqrt[20]{2400000\times 658297^{19}}-658297}{658297}\)
Calculate or simplify the expression \( (746.23/450)^(1/11) - 1 \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(\frac{746.23}{450}\right)^{\frac{1}{11}}-1\)
- step1: Divide the terms:
\(\left(\frac{74623}{45000}\right)^{\frac{1}{11}}-1\)
- step2: Rewrite the expression:
\(\frac{74623^{\frac{1}{11}}}{45000^{\frac{1}{11}}}-1\)
- step3: Calculate:
\(\frac{74623^{\frac{1}{11}}\times 45000^{\frac{10}{11}}}{45000}-1\)
- step4: Reduce fractions to a common denominator:
\(\frac{74623^{\frac{1}{11}}\times 45000^{\frac{10}{11}}}{45000}-\frac{45000}{45000}\)
- step5: Transform the expression:
\(\frac{74623^{\frac{1}{11}}\times 45000^{\frac{10}{11}}-45000}{45000}\)
- step6: Simplify:
\(\frac{\sqrt[11]{74623}\times \sqrt[11]{45000^{10}}-45000}{45000}\)
- step7: Expand the expression:
\(\frac{\sqrt[11]{74623\times 45000^{10}}-45000}{45000}\)
Calculate or simplify the expression \( (1300000/33619.78)^(1/40) - 1 \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(\frac{1300000}{33619.78}\right)^{\frac{1}{40}}-1\)
- step1: Divide the numbers:
\(\left(\frac{65000000}{1680989}\right)^{\frac{1}{40}}-1\)
- step2: Rewrite the expression:
\(\frac{65000000^{\frac{1}{40}}}{1680989^{\frac{1}{40}}}-1\)
- step3: Calculate:
\(\frac{65000000^{\frac{1}{40}}\times 1680989^{\frac{39}{40}}}{1680989}-1\)
- step4: Reduce fractions to a common denominator:
\(\frac{65000000^{\frac{1}{40}}\times 1680989^{\frac{39}{40}}}{1680989}-\frac{1680989}{1680989}\)
- step5: Transform the expression:
\(\frac{65000000^{\frac{1}{40}}\times 1680989^{\frac{39}{40}}-1680989}{1680989}\)
- step6: Simplify:
\(\frac{\sqrt[40]{65000000}\times \sqrt[40]{1680989^{39}}-1680989}{1680989}\)
- step7: Expand the expression:
\(\frac{\sqrt[40]{65000000\times 1680989^{39}}-1680989}{1680989}\)
Calculate or simplify the expression \( (10465.82/3600)^(1/17) - 1 \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(\frac{10465.82}{3600}\right)^{\frac{1}{17}}-1\)
- step1: Divide the terms:
\(\left(\frac{523291}{180000}\right)^{\frac{1}{17}}-1\)
- step2: Rewrite the expression:
\(\frac{523291^{\frac{1}{17}}}{180000^{\frac{1}{17}}}-1\)
- step3: Calculate:
\(\frac{523291^{\frac{1}{17}}\times 180000^{\frac{16}{17}}}{180000}-1\)
- step4: Reduce fractions to a common denominator:
\(\frac{523291^{\frac{1}{17}}\times 180000^{\frac{16}{17}}}{180000}-\frac{180000}{180000}\)
- step5: Transform the expression:
\(\frac{523291^{\frac{1}{17}}\times 180000^{\frac{16}{17}}-180000}{180000}\)
- step6: Simplify:
\(\frac{\sqrt[17]{523291}\times \sqrt[17]{180000^{16}}-180000}{180000}\)
- step7: Expand the expression:
\(\frac{\sqrt[17]{523291\times 180000^{16}}-180000}{180000}\)
Round the number \( 0.064788 \) into 2 decimal places.
Round the number by following steps:
- step0: Round \(0.064788\) to \(2\) decimal places using standard rounding method:
\(0.064788\)
- step1: Round \(0.064788\) to \(2\) decimal places using standard rounding method\(:\)
\(0.06\)
Round the number \( 0.047054 \) into 2 decimal places.
Round the number by following steps:
- step0: Round \(0.047054\) to \(2\) decimal places using standard rounding method:
\(0.047054\)
- step1: Round \(0.047054\) to \(2\) decimal places using standard rounding method\(:\)
\(0.05\)
Round the number \( 0.09568 \) into 2 decimal places.
Round the number by following steps:
- step0: Round \(0.09568\) to \(2\) decimal places using standard rounding method:
\(0.09568\)
- step1: Round \(0.09568\) to \(2\) decimal places using standard rounding method\(:\)
\(0.10\)
Round the number \( 0.066816 \) into 2 decimal places.
Round the number by following steps:
- step0: Round \(0.066816\) to \(2\) decimal places using standard rounding method:
\(0.066816\)
- step1: Round \(0.066816\) to \(2\) decimal places using standard rounding method\(:\)
\(0.07\)
Here are the annual rates of return for each investment choice:
### a. Investment of \( \$ 450.00 \) to receive \( \$ 746.23 \) in 11 years
- Annual Rate of Return: **5.00%**
### b. Investment of \( \$ 3,600.00 \) to receive \( \$ 10,465.82 \) in 17 years
- Annual Rate of Return: **6.00%**
### c. Investment of \( \$ 32,914.85 \) to receive \( \$ 120,000.00 \) in 20 years
- Annual Rate of Return: **7.00%**
### d. Investment of \( \$ 33,619.78 \) to receive \( \$ 1,300,000.00 \) in 40 years
- Annual Rate of Return: **10.00%**
Thus, for the specific investment of \( \$ 3,600.00 \) today to receive \( \$ 10,465.82 \) in 17 years, Keiko will earn an annual rate of return of **6.00%**.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution