Question
upstudy study bank question image url

State the component form of each vector. 21. \( |\mathbf{v}|=5 ; \theta=20^{\circ} \) 22. \( |\mathbf{u}|=4 \sqrt{3} ; \theta=\frac{\pi}{6} \) 23. \( |\mathbf{w}|=4 \) in the direction of \( \langle 2,-5\rangle \) 24. \( |\mathbf{w}|=9 \) in the direction of \( \langle-7,15\rangle \)

Ask by Pearson Ortiz. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The component forms of the vectors are: 21. \( \mathbf{v} = \langle 4.70, 1.71 \rangle \) 22. \( \mathbf{u} = \langle 6, 2\sqrt{3} \rangle \) 23. \( \mathbf{w} = \left\langle \frac{8}{\sqrt{29}}, \frac{-20}{\sqrt{29}} \right\rangle \) 24. \( \mathbf{w} = \left\langle \frac{-63}{\sqrt{274}}, \frac{135}{\sqrt{274}} \right\rangle \)

Solution

Sure, let's find the component form (i.e., the \(x\) and \(y\) components) of each vector based on the given magnitude and direction. ### 21. \( |\mathbf{v}| = 5 ; \theta = 20^{\circ} \) A vector with magnitude \(5\) and angle \(20^\circ\) from the positive \(x\)-axis can be expressed using cosine and sine for the \(x\) and \(y\) components, respectively. \[ \mathbf{v} = \langle 5 \cos 20^\circ,\ 5 \sin 20^\circ \rangle \approx \langle 4.70,\ 1.71 \rangle \] ### 22. \( |\mathbf{u}| = 4\sqrt{3} ; \theta = \frac{\pi}{6} \) Here, the angle \(\frac{\pi}{6}\) radians is equivalent to \(30^\circ\). Using the exact values for cosine and sine at \(30^\circ\): \[ \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}, \quad \sin \frac{\pi}{6} = \frac{1}{2} \] Thus, \[ \mathbf{u} = \langle 4\sqrt{3} \cdot \frac{\sqrt{3}}{2},\ 4\sqrt{3} \cdot \frac{1}{2} \rangle = \langle 6,\ 2\sqrt{3} \rangle \] ### 23. \( |\mathbf{w}| = 4 \) in the direction of \( \langle 2, -5 \rangle \) First, find the unit vector in the direction of \(\langle 2, -5 \rangle\): \[ \text{Magnitude of } \langle 2, -5 \rangle = \sqrt{2^2 + (-5)^2} = \sqrt{4 + 25} = \sqrt{29} \] \[ \text{Unit vector} = \left\langle \frac{2}{\sqrt{29}},\ \frac{-5}{\sqrt{29}} \right\rangle \] Now, multiply by the magnitude \(4\) to get \(\mathbf{w}\): \[ \mathbf{w} = 4 \cdot \left\langle \frac{2}{\sqrt{29}},\ \frac{-5}{\sqrt{29}} \right\rangle = \left\langle \frac{8}{\sqrt{29}},\ \frac{-20}{\sqrt{29}} \right\rangle \] For rationalized components: \[ \mathbf{w} = \left\langle \frac{8\sqrt{29}}{29},\ \frac{-20\sqrt{29}}{29} \right\rangle \] ### 24. \( |\mathbf{w}| = 9 \) in the direction of \( \langle -7, 15 \rangle \) Similarly, find the unit vector in the direction of \(\langle -7, 15 \rangle\): \[ \text{Magnitude of } \langle -7, 15 \rangle = \sqrt{(-7)^2 + 15^2} = \sqrt{49 + 225} = \sqrt{274} \] \[ \text{Unit vector} = \left\langle \frac{-7}{\sqrt{274}},\ \frac{15}{\sqrt{274}} \right\rangle \] Multiply by the magnitude \(9\) to get \(\mathbf{w}\): \[ \mathbf{w} = 9 \cdot \left\langle \frac{-7}{\sqrt{274}},\ \frac{15}{\sqrt{274}} \right\rangle = \left\langle \frac{-63}{\sqrt{274}},\ \frac{135}{\sqrt{274}} \right\rangle \] For rationalized components: \[ \mathbf{w} = \left\langle \frac{-63\sqrt{274}}{274},\ \frac{135\sqrt{274}}{274} \right\rangle \] --- **Summary of Component Forms:** 21. \(\mathbf{v} = \langle 5 \cos 20^\circ,\ 5 \sin 20^\circ \rangle \approx \langle 4.70,\ 1.71 \rangle\) 22. \(\mathbf{u} = \langle 6,\ 2\sqrt{3} \rangle\) 23. \(\mathbf{w} = \left\langle \dfrac{8}{\sqrt{29}},\ \dfrac{-20}{\sqrt{29}} \right\rangle\) 24. \(\mathbf{w} = \left\langle \dfrac{-63}{\sqrt{274}},\ \dfrac{135}{\sqrt{274}} \right\rangle\)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

The component form of a vector can be found using the magnitude and the angle. For vector \( \mathbf{v} \), we convert \( \theta \) to radians and compute the components using: \(\mathbf{v} = \langle |\mathbf{v}| \cos(\theta), |\mathbf{v}| \sin(\theta) \rangle\). Thus, \( \mathbf{v} = \langle 5 \cos(20^\circ), 5 \sin(20^\circ) \rangle \approx \langle 4.7, 1.7 \rangle \). For vector \( \mathbf{u} \), since \(\theta = \frac{\pi}{6}\) (which is 30 degrees), we calculate similarly: \( \mathbf{u} = \langle 4\sqrt{3} \cos\left(\frac{\pi}{6}\right), 4\sqrt{3} \sin\left(\frac{\pi}{6}\right) \rangle \approx \langle 6.93, 4 \rangle \). For vector \( \mathbf{w} \) with a magnitude of 4 in the direction of \( \langle 2, -5 \rangle \), we first normalize the direction vector to find the unit vector \( \mathbf{d} \): \(\mathbf{d} = \frac{\langle 2, -5 \rangle}{\sqrt{2^2 + (-5)^2}} = \langle \frac{2}{\sqrt{29}}, \frac{-5}{\sqrt{29}} \rangle\). Hence, \( \mathbf{w} = 4 \cdot \mathbf{d} \approx \langle \frac{8}{\sqrt{29}}, \frac{-20}{\sqrt{29}} \rangle \). Lastly, for vector \( \mathbf{w} \) with a magnitude of 9 in the direction of \( \langle -7, 15 \rangle \), normalizing gives: \(\mathbf{d} = \frac{\langle -7, 15 \rangle}{\sqrt{(-7)^2 + 15^2}} = \langle \frac{-7}{\sqrt{274}}, \frac{15}{\sqrt{274}} \rangle\). Therefore, \( \mathbf{w} = 9 \cdot \mathbf{d} \approx \langle \frac{-63}{\sqrt{274}}, \frac{135}{\sqrt{274}} \rangle \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy