Answer
The truth sets for the equations are:
- a) \( \{-1, 1\} \)
- b) \( \{-2, -1\} \)
- c) \( \{-1, 1\} \)
- d) \( \{0\} \)
- e) \( \left\{ \log_{2}{(5-\sqrt{17})}-1, \log_{2}{(5+\sqrt{17})}-1 \right\} \)
- f) \( \{2\} \)
- g) \( \{3\} \)
- h) \( \{5\} \)
Solution
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2^{2x}+3\times 2^{x}-4=0\)
- step1: Factor the expression:
\(\left(2^{x}-1\right)\left(2^{x}+4\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&2^{x}-1=0\\&2^{x}+4=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=0\\&x \notin \mathbb{R}\end{align}\)
- step4: Find the union:
\(x=0\)
Solve the equation \( 3^{2 x+3}-4(3^{x+1})+1=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3^{2x+3}-4\times 3^{x+1}+1=0\)
- step1: Factor the expression:
\(\left(3^{x+1}-1\right)\left(3^{x+2}-1\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&3^{x+1}-1=0\\&3^{x+2}-1=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=-1\\&x=-2\end{align}\)
- step4: Rewrite:
\(x_{1}=-2,x_{2}=-1\)
Solve the equation \( 3^{2 x+1}-26(3^{x})-9=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3^{2x+1}-26\times 3^{x}-9=0\)
- step1: Factor the expression:
\(\left(3^{x}-9\right)\left(3^{x+1}+1\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&3^{x}-9=0\\&3^{x+1}+1=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=2\\&x \notin \mathbb{R}\end{align}\)
- step4: Find the union:
\(x=2\)
Solve the equation \( 4^{x}-6(2^{x})-16=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(4^{x}-6\times 2^{x}-16=0\)
- step1: Factor the expression:
\(\left(2^{x}-8\right)\left(2^{x}+2\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&2^{x}-8=0\\&2^{x}+2=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=3\\&x \notin \mathbb{R}\end{align}\)
- step4: Find the union:
\(x=3\)
Solve the equation \( 2^{2 x+1}-5(2^{x})+2=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2^{2x+1}-5\times 2^{x}+2=0\)
- step1: Factor the expression:
\(\left(2^{x}-2\right)\left(2^{x+1}-1\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&2^{x}-2=0\\&2^{x+1}-1=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=1\\&x=-1\end{align}\)
- step4: Rewrite:
\(x_{1}=-1,x_{2}=1\)
Solve the equation \( 2^{x}+2^{(x-1)}=48 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2^{x}+2^{\left(x-1\right)}=48\)
- step1: Simplify:
\(3\times 2^{x-1}=48\)
- step2: Divide both sides:
\(\frac{3\times 2^{x-1}}{3}=\frac{48}{3}\)
- step3: Divide the numbers:
\(2^{x-1}=16\)
- step4: Rewrite in exponential form:
\(2^{x-1}=2^{4}\)
- step5: Set the exponents equal:
\(x-1=4\)
- step6: Move the constant to the right side:
\(x=4+1\)
- step7: Add the numbers:
\(x=5\)
Solve the equation \( 3^{2 x}-30(3^{x-2})+1=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3^{2x}-30\times 3^{x-2}+1=0\)
- step1: Factor the expression:
\(\frac{1}{3}\left(3^{x}-3\right)\left(3^{x+1}-1\right)=0\)
- step2: Calculate:
\(\left(3^{x}-3\right)\left(3^{x+1}-1\right)=0\)
- step3: Separate into possible cases:
\(\begin{align}&3^{x}-3=0\\&3^{x+1}-1=0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=1\\&x=-1\end{align}\)
- step5: Rewrite:
\(x_{1}=-1,x_{2}=1\)
Solve the equation \( 2^{2 x}-5(2^{x})+2=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2^{2x}-5\times 2^{x}+2=0\)
- step1: Use substitution:
\(t^{2}-5t+2=0\)
- step2: Solve using the quadratic formula:
\(t=\frac{5\pm \sqrt{\left(-5\right)^{2}-4\times 2}}{2}\)
- step3: Simplify the expression:
\(t=\frac{5\pm \sqrt{17}}{2}\)
- step4: Separate into possible cases:
\(\begin{align}&t=\frac{5+\sqrt{17}}{2}\\&t=\frac{5-\sqrt{17}}{2}\end{align}\)
- step5: Substitute back:
\(\begin{align}&2^{x}=\frac{5+\sqrt{17}}{2}\\&2^{x}=\frac{5-\sqrt{17}}{2}\end{align}\)
- step6: Solve the equation for \(x:\)
\(\begin{align}&x=\log_{2}{\left(5+\sqrt{17}\right)}-1\\&x=\log_{2}{\left(5-\sqrt{17}\right)}-1\end{align}\)
- step7: Rewrite:
\(x_{1}=\log_{2}{\left(5-\sqrt{17}\right)}-1,x_{2}=\log_{2}{\left(5+\sqrt{17}\right)}-1\)
Here are the truth sets for each of the given equations:
a) For the equation \( 2^{2 x+1}-5(2^{x})+2=0 \):
- The solutions are \( x_{1} = -1 \) and \( x_{2} = 1 \).
- **Truth set**: \( \{-1, 1\} \)
b) For the equation \( 3^{2 x+3}-4(3^{x+1})+1=0 \):
- The solutions are \( x_{1} = -2 \) and \( x_{2} = -1 \).
- **Truth set**: \( \{-2, -1\} \)
c) For the equation \( 3^{2 x}-30(3^{x-2})+1=0 \):
- The solutions are \( x_{1} = -1 \) and \( x_{2} = 1 \).
- **Truth set**: \( \{-1, 1\} \)
d) For the equation \( 2^{2 x}+3(2^{x})-4=0 \):
- The solution is \( x = 0 \).
- **Truth set**: \( \{0\} \)
e) For the equation \( 2^{2 x}-5(2^{x})+2=0 \):
- The solutions are \( x_{1} = \log_{2}{(5-\sqrt{17})}-1 \) and \( x_{2} = \log_{2}{(5+\sqrt{17})}-1 \).
- **Truth set**: \( \left\{ \log_{2}{(5-\sqrt{17})}-1, \log_{2}{(5+\sqrt{17})}-1 \right\} \)
f) For the equation \( 3^{2 x+1}-26(3^{x})-9=0 \):
- The solution is \( x = 2 \).
- **Truth set**: \( \{2\} \)
g) For the equation \( 4^{x}-6(2^{x})-16=0 \):
- The solution is \( x = 3 \).
- **Truth set**: \( \{3\} \)
h) For the equation \( 2^{x}+2^{(x-1)}=48 \):
- The solution is \( x = 5 \).
- **Truth set**: \( \{5\} \)
In summary, the truth sets for the equations are:
- a) \( \{-1, 1\} \)
- b) \( \{-2, -1\} \)
- c) \( \{-1, 1\} \)
- d) \( \{0\} \)
- e) \( \left\{ \log_{2}{(5-\sqrt{17})}-1, \log_{2}{(5+\sqrt{17})}-1 \right\} \)
- f) \( \{2\} \)
- g) \( \{3\} \)
- h) \( \{5\} \)
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution