If \( \alpha \) and \( \beta \) are the roots of \( a x^{2}+b x+c=0 \), find the equations whose roots are \( \begin{array}{ll}\text { a. } \alpha \beta^{-1}, \beta \alpha^{-1} & \text { b. } \alpha^{2}, \beta^{2} \\ \text { d. } \alpha^{3}, \beta^{3} & \text { e. } \sqrt{\frac{\alpha}{\beta}}, \sqrt{\frac{\beta}{\alpha}} \\ \text { If the roots of the equation } a x^{2}+c x+c=0 & \text { are in the ratio } m: n \text {, then prove that }(a \alpha+b)^{-1},(a \beta+b\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To find the equations with specific roots derived from \( \alpha \) and \( \beta \), we can use the relationships between the coefficients of the polynomial and its roots. For the equation \( a x^2 + b x + c = 0 \), we have the following relationships: 1. **Sum of Roots**: \( \alpha + \beta = -\frac{b}{a} \) 2. **Product of Roots**: \( \alpha \beta = \frac{c}{a} \) Now, let’s derive the equations for the specified roots. For part **a.** where the roots are \( \alpha \beta^{-1} \) and \( \beta \alpha^{-1} \): - Sum: \( \alpha \beta^{-1} + \beta \alpha^{-1} = \frac{\alpha^2 + \beta^2}{\alpha \beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha \beta} = \frac{\left(-\frac{b}{a}\right)^2 - 2\frac{c}{a}}{\frac{c}{a}} = \frac{b^2 - 2ac}{c} \) - Product: \( \alpha \beta^{-1} \cdot \beta \alpha^{-1} = 1 \) Therefore, the resulting equation is: \[ c x^2 - (b^2 - 2ac)x + c = 0 \] For part **b.** with roots \( \alpha^2 \) and \( \beta^2 \): - Sum: \( \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \left(-\frac{b}{a}\right)^2 - 2\frac{c}{a} = \frac{b^2 - 2ac}{a^2} \) - Product: \( \alpha^2 \beta^2 = (\alpha \beta)^2 = \left(\frac{c}{a}\right)^2 \) Thus, the new equation is: \[ a^2 x^2 - (b^2 - 2ac)x + c^2 = 0 \] For parts **d.** \( \alpha^3 \) and \( \beta^3 \): - The sum can be derived similarly as: \[ \alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha \beta) = -\frac{b}{a}\left(\frac{b^2 - ac}{a}\right) \] - And the product becomes \( \alpha^3 \beta^3 = (\alpha \beta)^3 = \left(\frac{c}{a}\right)^3 \). The resulting equation is: \[ a^3 x^2 - \left(-\frac{b(b^2 - ac)}{a^2}\right)x + \left(\frac{c^3}{a^3}\right) = 0 \] For part **e.** with roots \( \sqrt{\frac{\alpha}{\beta}} \) and \( \sqrt{\frac{\beta}{\alpha}} \): - The sum is \( \sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} = \frac{\alpha + \beta}{\sqrt{\alpha\beta}} = \frac{-\frac{b}{a}}{\sqrt{\frac{c}{a}}} = -\frac{b}{\sqrt{ac}} \) - The product becomes \( \sqrt{\frac{\alpha}{\beta}} \cdot \sqrt{\frac{\beta}{\alpha}} = 1 \). Thus, the new equation is: \[ x^2 + \frac{b}{\sqrt{ac}} x + 1 = 0 \]