Question
upstudy study bank question image url

If \( \alpha \) and \( \beta \) are the roots of \( a x^{2}+b x+c=0 \), find the equations whose roots are \( \begin{array}{ll}\text { a. } \alpha \beta^{-1}, \beta \alpha^{-1} & \text { b. } \alpha^{2}, \beta^{2} \\ \text { d. } \alpha^{3}, \beta^{3} & \text { e. } \sqrt{\frac{\alpha}{\beta}}, \sqrt{\frac{\beta}{\alpha}} \\ \text { If the roots of the equation } a x^{2}+c x+c=0 & \text { are in the ratio } m: n \text {, then prove that }(a \alpha+b)^{-1},(a \beta+b\end{array} \)

Ask by Sandoval Pena. in Nepal
Nov 30,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

For the roots \( \alpha \beta^{-1}, \beta \alpha^{-1} \), the equation is \( x^2 - \frac{b^2 - 2ac}{ac}x + 1 = 0 \). For the roots \( \alpha^2, \beta^2 \), the equation is \( x^2 - \frac{b^2 - 2ac}{a^2}x + \frac{c^2}{a^2} = 0 \). For the roots \( \alpha^3, \beta^3 \), the equation is \( x^2 + \frac{b(b^2 - 2ac)}{a^3}x + \frac{c^3}{a^3} = 0 \). For the roots \( \sqrt{\frac{\alpha}{\beta}}, \sqrt{\frac{\beta}{\alpha}} \), the equation is \( x^2 + \frac{b}{\sqrt{ac}}x + 1 = 0 \). If the roots of \( ax^2 + cx + c = 0 \) are in the ratio \( m:n \), then the relationship is \( c^2 mn = ac(m+n)^2 \).

Solution

To find the equations whose roots are transformations of the roots \( \alpha \) and \( \beta \) of the quadratic equation \( ax^2 + bx + c = 0 \), we will use Vieta's formulas, which state that for a quadratic equation \( ax^2 + bx + c = 0 \) with roots \( \alpha \) and \( \beta \): - The sum of the roots \( \alpha + \beta = -\frac{b}{a} \) - The product of the roots \( \alpha \beta = \frac{c}{a} \) Now, let's find the required equations for each case: ### a. Roots \( \alpha \beta^{-1}, \beta \alpha^{-1} \) Let \( r_1 = \alpha \beta^{-1} \) and \( r_2 = \beta \alpha^{-1} \). 1. **Sum of the roots**: \[ r_1 + r_2 = \alpha \beta^{-1} + \beta \alpha^{-1} = \frac{\alpha^2 + \beta^2}{\alpha \beta} \] Using the identity \( \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \): \[ \alpha^2 + \beta^2 = \left(-\frac{b}{a}\right)^2 - 2\left(\frac{c}{a}\right) = \frac{b^2 - 2ac}{a^2} \] Thus, \[ r_1 + r_2 = \frac{\frac{b^2 - 2ac}{a^2}}{\frac{c}{a}} = \frac{b^2 - 2ac}{ac} \] 2. **Product of the roots**: \[ r_1 r_2 = \alpha \beta^{-1} \cdot \beta \alpha^{-1} = 1 \] The equation with roots \( r_1 \) and \( r_2 \) is: \[ x^2 - \left(\frac{b^2 - 2ac}{ac}\right)x + 1 = 0 \] ### b. Roots \( \alpha^2, \beta^2 \) Let \( r_1 = \alpha^2 \) and \( r_2 = \beta^2 \). 1. **Sum of the roots**: \[ r_1 + r_2 = \alpha^2 + \beta^2 = \frac{b^2 - 2ac}{a^2} \] 2. **Product of the roots**: \[ r_1 r_2 = \alpha^2 \beta^2 = (\alpha \beta)^2 = \left(\frac{c}{a}\right)^2 \] The equation with roots \( r_1 \) and \( r_2 \) is: \[ x^2 - \left(\frac{b^2 - 2ac}{a^2}\right)x + \left(\frac{c}{a}\right)^2 = 0 \] ### d. Roots \( \alpha^3, \beta^3 \) Let \( r_1 = \alpha^3 \) and \( r_2 = \beta^3 \). 1. **Sum of the roots**: \[ r_1 + r_2 = \alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2) = \left(-\frac{b}{a}\right)\left(\frac{b^2 - 2ac}{a^2}\right) = -\frac{b(b^2 - 2ac)}{a^3} \] 2. **Product of the roots**: \[ r_1 r_2 = \alpha^3 \beta^3 = (\alpha \beta)^3 = \left(\frac{c}{a}\right)^3 \] The equation with roots \( r_1 \) and \( r_2 \) is: \[ x^2 + \frac{b(b^2 - 2ac)}{a^3}x + \left(\frac{c}{a}\right)^3 = 0 \] ### e. Roots \( \sqrt{\frac{\alpha}{\beta}}, \sqrt{\frac{\beta}{\alpha}} \) Let \( r_1 = \sqrt{\frac{\alpha}{\beta}} \) and \( r_2 = \sqrt{\frac{\beta}{\alpha}} \). 1. **Sum of the roots**: \[ r_1 + r_2 = \sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} = \frac{\alpha + \beta}{\sqrt{\alpha \beta}} = \frac{-\frac{b}{a}}{\sqrt{\frac{c}{a}}} = -\frac{b}{\sqrt{ac}} \] 2. **Product of the roots**: \[ r_1 r_2 = \sqrt{\frac{\alpha}{\beta}} \cdot \sqrt{\frac{\beta}{\alpha}} = 1 \] The equation with roots \( r_1 \) and \( r_2 \) is: \[ x^2 + \frac{b}{\sqrt{ac}}x + 1 = 0 \] ### Additional Problem If the roots of the equation \( ax^2 + cx + c = 0 \) are in the ratio \( m:n \), let the roots be \( r_1 = km \) and \( r_2 = kn \) for some \( k \). Using Vieta's formulas: - \( r_1 + r_2 = km + kn = k(m+n) = -\frac{c}{a} \) - \( r_1 r_2 = km \cdot kn = k^2mn = \frac{c}{a} \) From the first equation, we have \( k = -\frac{c}{a(m+n)} \). Substituting \( k \) into the second equation: \[ \left(-\frac{c}{a(m+n)}\right)^2 mn = \frac{c}{a} \] This leads to: \[ \frac{c^2 mn}{a^2(m+n)^2} = \frac{c}{a} \] Cross-multiplying gives: \[ c^2 mn = ac(m+n)^2 \] This proves the relationship. For the roots \( (a\alpha + b)^{-1} \) and \( (a\beta + b)^{-1} \), we can apply similar reasoning using Vieta's formulas to derive the new equation.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To find the equations with specific roots derived from \( \alpha \) and \( \beta \), we can use the relationships between the coefficients of the polynomial and its roots. For the equation \( a x^2 + b x + c = 0 \), we have the following relationships: 1. **Sum of Roots**: \( \alpha + \beta = -\frac{b}{a} \) 2. **Product of Roots**: \( \alpha \beta = \frac{c}{a} \) Now, let’s derive the equations for the specified roots. For part **a.** where the roots are \( \alpha \beta^{-1} \) and \( \beta \alpha^{-1} \): - Sum: \( \alpha \beta^{-1} + \beta \alpha^{-1} = \frac{\alpha^2 + \beta^2}{\alpha \beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha \beta} = \frac{\left(-\frac{b}{a}\right)^2 - 2\frac{c}{a}}{\frac{c}{a}} = \frac{b^2 - 2ac}{c} \) - Product: \( \alpha \beta^{-1} \cdot \beta \alpha^{-1} = 1 \) Therefore, the resulting equation is: \[ c x^2 - (b^2 - 2ac)x + c = 0 \] For part **b.** with roots \( \alpha^2 \) and \( \beta^2 \): - Sum: \( \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \left(-\frac{b}{a}\right)^2 - 2\frac{c}{a} = \frac{b^2 - 2ac}{a^2} \) - Product: \( \alpha^2 \beta^2 = (\alpha \beta)^2 = \left(\frac{c}{a}\right)^2 \) Thus, the new equation is: \[ a^2 x^2 - (b^2 - 2ac)x + c^2 = 0 \] For parts **d.** \( \alpha^3 \) and \( \beta^3 \): - The sum can be derived similarly as: \[ \alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha \beta) = -\frac{b}{a}\left(\frac{b^2 - ac}{a}\right) \] - And the product becomes \( \alpha^3 \beta^3 = (\alpha \beta)^3 = \left(\frac{c}{a}\right)^3 \). The resulting equation is: \[ a^3 x^2 - \left(-\frac{b(b^2 - ac)}{a^2}\right)x + \left(\frac{c^3}{a^3}\right) = 0 \] For part **e.** with roots \( \sqrt{\frac{\alpha}{\beta}} \) and \( \sqrt{\frac{\beta}{\alpha}} \): - The sum is \( \sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} = \frac{\alpha + \beta}{\sqrt{\alpha\beta}} = \frac{-\frac{b}{a}}{\sqrt{\frac{c}{a}}} = -\frac{b}{\sqrt{ac}} \) - The product becomes \( \sqrt{\frac{\alpha}{\beta}} \cdot \sqrt{\frac{\beta}{\alpha}} = 1 \). Thus, the new equation is: \[ x^2 + \frac{b}{\sqrt{ac}} x + 1 = 0 \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy