Question
upstudy study bank question image url

Simplify the following without using a calculator: \( \begin{array}{lll}\text { (a) } \sqrt{7} \sqrt{3} & \text { (b) } \sqrt{7} \sqrt{7}+(\sqrt{11})^{2} & \text { (o) }(2 \sqrt{3})^{2} \\ \text { (d) } 3 \sqrt{6}-\sqrt{6}+7 \sqrt{6} & \text { (c) } \sqrt[4]{3}+7 \sqrt[4]{3}-5 \sqrt[4]{3} & \text { (0) } \sqrt{3}+\sqrt{27} \\ \text { (g) } 2 \sqrt{18}-\sqrt{32} & \text { (h) } \frac{\sqrt{32}}{\sqrt{2}} & \text { (i) } \frac{\sqrt{51}}{\sqrt{3}}\end{array} \)

Ask by Pierce Morrison. in South Africa
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the simplified forms of the expressions: - **(a)** \( \sqrt{21} \) - **(b)** \( 18 \) - **(o)** \( 12 \) - **(d)** \( 9 \sqrt{6} \) - **(c)** \( 3 \sqrt[4]{3} \) - **(0)** \( 4 \sqrt{3} \) - **(g)** \( 2 \sqrt{2} \) - **(h)** \( 4 \) - **(i)** \( \sqrt{17} \)

Solution

Sure, let's simplify each expression step by step without using a calculator. ### (a) \( \sqrt{7} \times \sqrt{3} \) \[ \sqrt{7} \times \sqrt{3} = \sqrt{7 \times 3} = \sqrt{21} \] **Simplified Form:** \( \sqrt{21} \) --- ### (b) \( \sqrt{7} \times \sqrt{7} + (\sqrt{11})^{2} \) \[ \sqrt{7} \times \sqrt{7} = 7 \] \[ (\sqrt{11})^2 = 11 \] \[ 7 + 11 = 18 \] **Simplified Form:** \( 18 \) --- ### (o) \( (2 \sqrt{3})^{2} \) \[ (2 \sqrt{3})^{2} = 2^2 \times (\sqrt{3})^2 = 4 \times 3 = 12 \] **Simplified Form:** \( 12 \) --- ### (d) \( 3 \sqrt{6} - \sqrt{6} + 7 \sqrt{6} \) Combine like terms: \[ 3 \sqrt{6} - \sqrt{6} + 7 \sqrt{6} = (3 - 1 + 7) \sqrt{6} = 9 \sqrt{6} \] **Simplified Form:** \( 9 \sqrt{6} \) --- ### (c) \( \sqrt[4]{3} + 7 \sqrt[4]{3} - 5 \sqrt[4]{3} \) Combine like terms: \[ \sqrt[4]{3} + 7 \sqrt[4]{3} - 5 \sqrt[4]{3} = (1 + 7 - 5) \sqrt[4]{3} = 3 \sqrt[4]{3} \] **Simplified Form:** \( 3 \sqrt[4]{3} \) --- ### (0) \( \sqrt{3} + \sqrt{27} \) Simplify \( \sqrt{27} \): \[ \sqrt{27} = \sqrt{9 \times 3} = 3 \sqrt{3} \] Now, combine the terms: \[ \sqrt{3} + 3 \sqrt{3} = 4 \sqrt{3} \] **Simplified Form:** \( 4 \sqrt{3} \) --- ### (g) \( 2 \sqrt{18} - \sqrt{32} \) Simplify \( \sqrt{18} \) and \( \sqrt{32} \): \[ \sqrt{18} = \sqrt{9 \times 2} = 3 \sqrt{2} \] \[ \sqrt{32} = \sqrt{16 \times 2} = 4 \sqrt{2} \] Now, substitute back: \[ 2 \times 3 \sqrt{2} - 4 \sqrt{2} = 6 \sqrt{2} - 4 \sqrt{2} = 2 \sqrt{2} \] **Simplified Form:** \( 2 \sqrt{2} \) --- ### (h) \( \frac{\sqrt{32}}{\sqrt{2}} \) Simplify \( \sqrt{32} \): \[ \sqrt{32} = 4 \sqrt{2} \] Now, divide: \[ \frac{4 \sqrt{2}}{\sqrt{2}} = 4 \] **Simplified Form:** \( 4 \) --- ### (i) \( \frac{\sqrt{51}}{\sqrt{3}} \) Simplify the expression: \[ \frac{\sqrt{51}}{\sqrt{3}} = \sqrt{\frac{51}{3}} = \sqrt{17} \] **Simplified Form:** \( \sqrt{17} \) --- ### Summary of Simplified Forms - **(a)** \( \sqrt{21} \) - **(b)** \( 18 \) - **(o)** \( 12 \) - **(d)** \( 9 \sqrt{6} \) - **(c)** \( 3 \sqrt[4]{3} \) - **(0)** \( 4 \sqrt{3} \) - **(g)** \( 2 \sqrt{2} \) - **(h)** \( 4 \) - **(i)** \( \sqrt{17} \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Sure! Let's simplify each expression step by step. (a) \( \sqrt{7} \sqrt{3} = \sqrt{7 \times 3} = \sqrt{21} \) (b) \( \sqrt{7} \sqrt{7} + (\sqrt{11})^2 = 7 + 11 = 18 \) (c) \( \sqrt[4]{3} + 7 \sqrt[4]{3} - 5 \sqrt[4]{3} = (1 + 7 - 5) \sqrt[4]{3} = 3 \sqrt[4]{3} \) (d) \( 3 \sqrt{6} - \sqrt{6} + 7 \sqrt{6} = (3 - 1 + 7) \sqrt{6} = 9 \sqrt{6} \) (e) \( (2 \sqrt{3})^2 = 4 \times 3 = 12 \) (f) \( \sqrt{3} + \sqrt{27} = \sqrt{3} + \sqrt{9 \cdot 3} = \sqrt{3} + 3\sqrt{3} = 4\sqrt{3} \) (g) \( 2 \sqrt{18} - \sqrt{32} = 2 \cdot 3\sqrt{2} - 4\sqrt{2} = 6\sqrt{2} - 4\sqrt{2} = 2\sqrt{2} \) (h) \( \frac{\sqrt{32}}{\sqrt{2}} = \sqrt{\frac{32}{2}} = \sqrt{16} = 4 \) (i) \( \frac{\sqrt{51}}{\sqrt{3}} = \sqrt{\frac{51}{3}} = \sqrt{17} \) So the simplified results are: (a) \( \sqrt{21} \), (b) \( 18 \), (c) \( 3 \sqrt[4]{3} \), (d) \( 9 \sqrt{6} \), (e) \( 12 \), (f) \( 4 \sqrt{3} \), (g) \( 2 \sqrt{2} \), (h) \( 4 \), and (i) \( \sqrt{17} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy