Question
upstudy study bank question image url

a. \( \lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\eta \mu x}\right) \)

Ask by Cox Hamilton. in Greece
Jan 20,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Το όριο \( \lim_{x \rightarrow 0}\left(\frac{1}{x} - \frac{1}{\eta \mu x}\right) \) εξαρτάται από την τιμή του \( \eta \mu \): - Αν \( \eta \mu > 1 \), το όριο είναι \( +\infty \). - Αν \( \eta \mu < 1 \), το όριο είναι \( -\infty \). - Αν \( \eta \mu = 1 \), το όριο είναι 0. Συνολικά, το όριο είναι: \[ \lim_{x \rightarrow 0}\left(\frac{1}{x} - \frac{1}{\eta \mu x}\right) = \begin{cases} +\infty & \text{αν } \eta \mu > 1 \\ -\infty & \text{αν } \eta \mu < 1 \\ 0 & \text{αν } \eta \mu = 1 \\ \end{cases} \]

Solution

Το όριο που δίνεται είναι: \[ \lim_{x \rightarrow 0}\left(\frac{1}{x} - \frac{1}{\eta \mu x}\right) \] Μπορούμε να παραγοντοποιήσουμε το \( \frac{1}{x} \): \[ \frac{1}{x} - \frac{1}{\eta \mu x} = \frac{1}{x}\left(1 - \frac{1}{\eta \mu}\right) = \frac{\eta \mu - 1}{\eta \mu x} \] Το όριο εξαρτάται από την τιμή του προϊόντος \( \eta \mu \): 1. **Αν \( \eta \mu > 1 \):** \[ \lim_{x \rightarrow 0}\frac{\eta \mu - 1}{\eta \mu x} = +\infty \] 2. **Αν \( \eta \mu < 1 \):** \[ \lim_{x \rightarrow 0}\frac{\eta \mu - 1}{\eta \mu x} = -\infty \] 3. **Αν \( \eta \mu = 1 \):** \[ \lim_{x \rightarrow 0}\frac{\eta \mu - 1}{\eta \mu x} = 0 \] **Συμπερασματικά:** \[ \lim_{x \rightarrow 0}\left(\frac{1}{x} - \frac{1}{\eta \mu x}\right) = \begin{cases} +\infty & \text{αν } \eta \mu > 1 \\ -\infty & \text{αν } \eta \mu < 1 \\ 0 & \text{αν } \eta \mu = 1 \\ \end{cases} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To solve the limit \( \lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\eta \mu x}\right) \), we can factor out \( \frac{1}{x} \): \[ \lim _{x \rightarrow 0}\left(\frac{1}{x} - \frac{1}{\eta \mu x}\right) = \lim _{x \rightarrow 0}\left(\frac{1}{x}\left(1 - \frac{1}{\eta \mu}\right)\right) \] This can be simplified to: \[ \lim _{x \rightarrow 0}\left(\frac{1 - \frac{1}{\eta \mu}}{x}\right) \] Now, if \( 1 - \frac{1}{\eta \mu} \neq 0 \) (which occurs unless \( \eta \mu = 1 \)), as \( x \) approaches 0, the term \( \frac{1}{x} \) will approach infinity. Thus, the limit diverges to either \( +\infty \) or \( -\infty \) depending on the sign of \( 1 - \frac{1}{\eta \mu} \): - If \( 1 - \frac{1}{\eta \mu} > 0 \Rightarrow \eta \mu < 1 \): The limit approaches \( +\infty \). - If \( 1 - \frac{1}{\eta \mu} < 0 \Rightarrow \eta \mu > 1 \): The limit approaches \( -\infty \). - If \( \eta \mu = 1 \): The limit would be \( 0 \). Hence, the final result of the limit depends on the value of \( \eta \mu \).

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy