6. If \( x=a(\cos t+\log \tan t 2), y=a \sin t \) find: \( d y / d x \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To find \( \frac{dy}{dx} \), we first need to determine \( \frac{dy}{dt} \) and \( \frac{dx}{dt} \) from the given parametric equations \( x = a(\cos t + \log \tan(\frac{t}{2})) \) and \( y = a \sin t \). 1. Differentiate \( y \) with respect to \( t \): \[ \frac{dy}{dt} = \frac{d}{dt}(a \sin t) = a \cos t \] 2. Differentiate \( x \) with respect to \( t \): \[ \frac{dx}{dt} = \frac{d}{dt}\left(a(\cos t + \log \tan(\frac{t}{2}))\right) = a\left(-\sin t + \frac{1}{\tan(\frac{t}{2}) \cdot \frac{1}{2} \sec^2(\frac{t}{2}) \cdot \frac{1}{2}}\right) \] This simplifies by using the chain rule on \( \log \tan(\frac{t}{2}) \). 3. Now we can find \( \frac{dy}{dx} \) using the relation: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Plugging in the values from the derivative results: \[ \frac{dy}{dx} = \frac{a \cos t}{a\left(-\sin t + \frac{1}{\tan(\frac{t}{2}) \cdot \frac{1}{2} \sec^2(\frac{t}{2})}\right)} = \frac{\cos t}{-\sin t + \frac{1}{\tan(\frac{t}{2}) \cdot \frac{1}{2} \sec^2(\frac{t}{2})}} \] That's your answer for \( \frac{dy}{dx} \).