Question
upstudy study bank question image url

6. If \( x=a(\cos t+\log \tan t 2), y=a \sin t \) find: \( d y / d x \)

Ask by Collins Bartlett. in India
Jan 09,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \frac{dy}{dx} = \frac{\cos t}{-\sin t + \frac{1}{\sin t \cos t}} \]

Solution

To find \(\frac{dy}{dx}\) for the given parametric equations: \[ x = a\left(\cos t + \log(2 \tan t)\right), \quad y = a \sin t, \] we'll use the chain rule for derivatives in parametric form: \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}. \] ### Step 1: Compute \(\frac{dy}{dt}\) Given: \[ y = a \sin t, \] the derivative with respect to \(t\) is: \[ \frac{dy}{dt} = a \cos t. \] ### Step 2: Compute \(\frac{dx}{dt}\) Given: \[ x = a\left(\cos t + \log(2 \tan t)\right), \] the derivative with respect to \(t\) is: \[ \frac{dx}{dt} = a\left(-\sin t + \frac{d}{dt} \log(2 \tan t)\right). \] To find \(\frac{d}{dt} \log(2 \tan t)\), use the chain rule: \[ \frac{d}{dt} \log(2 \tan t) = \frac{1}{2 \tan t} \cdot 2 \sec^2 t = \frac{\sec^2 t}{\tan t}. \] Simplify: \[ \frac{\sec^2 t}{\tan t} = \frac{1}{\cos^2 t} \cdot \frac{\cos t}{\sin t} = \frac{1}{\sin t \cos t}. \] Thus: \[ \frac{dx}{dt} = a\left(-\sin t + \frac{1}{\sin t \cos t}\right). \] ### Step 3: Compute \(\frac{dy}{dx}\) Now, substitute the derivatives into the chain rule: \[ \frac{dy}{dx} = \frac{a \cos t}{a\left(-\sin t + \frac{1}{\sin t \cos t}\right)} = \frac{\cos t}{-\sin t + \frac{1}{\sin t \cos t}}. \] To simplify, find a common denominator for the terms in the denominator: \[ -\sin t + \frac{1}{\sin t \cos t} = \frac{-\sin^2 t \cos t + 1}{\sin t \cos t}. \] Thus: \[ \frac{dy}{dx} = \frac{\cos t}{\frac{-\sin^2 t \cos t + 1}{\sin t \cos t}} = \frac{\cos^2 t \sin t}{1 - \sin^2 t \cos t}. \] ### Final Answer \[ \boxed{\dfrac{dy}{dx} = \dfrac{\cos t}{\, -\,\sin t\,+\,\dfrac{1}{\,\cos t\,\sin t\,}}} \] Alternatively, it can be written as: \[ \frac{dy}{dx} = \frac{\sin t \cos^2 t}{1 - \sin^2 t \cos t} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To find \( \frac{dy}{dx} \), we first need to determine \( \frac{dy}{dt} \) and \( \frac{dx}{dt} \) from the given parametric equations \( x = a(\cos t + \log \tan(\frac{t}{2})) \) and \( y = a \sin t \). 1. Differentiate \( y \) with respect to \( t \): \[ \frac{dy}{dt} = \frac{d}{dt}(a \sin t) = a \cos t \] 2. Differentiate \( x \) with respect to \( t \): \[ \frac{dx}{dt} = \frac{d}{dt}\left(a(\cos t + \log \tan(\frac{t}{2}))\right) = a\left(-\sin t + \frac{1}{\tan(\frac{t}{2}) \cdot \frac{1}{2} \sec^2(\frac{t}{2}) \cdot \frac{1}{2}}\right) \] This simplifies by using the chain rule on \( \log \tan(\frac{t}{2}) \). 3. Now we can find \( \frac{dy}{dx} \) using the relation: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Plugging in the values from the derivative results: \[ \frac{dy}{dx} = \frac{a \cos t}{a\left(-\sin t + \frac{1}{\tan(\frac{t}{2}) \cdot \frac{1}{2} \sec^2(\frac{t}{2})}\right)} = \frac{\cos t}{-\sin t + \frac{1}{\tan(\frac{t}{2}) \cdot \frac{1}{2} \sec^2(\frac{t}{2})}} \] That's your answer for \( \frac{dy}{dx} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy