2. Show that a) \( \sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To demonstrate that \( \sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a b} \), we can start by expressing the roots in exponential form. Recall that \( \sqrt[n]{a} = a^{1/n} \) and \( \sqrt[n]{b} = b^{1/n} \). Therefore, we can rewrite the left side as: \[ \sqrt[n]{a} \cdot \sqrt[n]{b} = a^{1/n} \cdot b^{1/n} \] Using the property of exponents, \( x^m \cdot y^m = (xy)^m \), we can combine the two terms: \[ a^{1/n} \cdot b^{1/n} = (ab)^{1/n} \] Now, we can rewrite the right side: \[ \sqrt[n]{a b} = (ab)^{1/n} \] Thus, we have shown that: \[ \sqrt[n]{a} \cdot \sqrt[n]{b} = (ab)^{1/n} = \sqrt[n]{a b} \] This completes the proof.