Question
Write the composite function \( f(g(x)) \) if \( \begin{array}{ll}\text { a. } f(x)=x^{2} & \text { and } g(x)=2 x+1 \\ \text { b. } f(x)=x+1 & \text { and } g(x)=x^{3}+\sin x .\end{array} \)
Ask by Estrada Barrett. in Nepal
Jan 21,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
a. \( f(g(x)) = (2x + 1)^2 = 4x^{2} + 4x + 1 \)
b. \( f(g(x)) = x^{3} + \sin x + 1 \)
Solution
To find the composite function \( f(g(x)) \), you substitute the function \( g(x) \) into the function \( f(x) \). Let's solve each part step by step.
### a. \( f(x) = x^{2} \) and \( g(x) = 2x + 1 \)
**Composite Function \( f(g(x)) \):**
\[
f(g(x)) = f(2x + 1) = (2x + 1)^{2}
\]
**Simplifying (optional):**
\[
(2x + 1)^{2} = 4x^{2} + 4x + 1
\]
### b. \( f(x) = x + 1 \) and \( g(x) = x^{3} + \sin x \)
**Composite Function \( f(g(x)) \):**
\[
f(g(x)) = f(x^{3} + \sin x) = (x^{3} + \sin x) + 1 = x^{3} + \sin x + 1
\]
### Summary
- **a.** \( f(g(x)) = (2x + 1)^2 = 4x^{2} + 4x + 1 \)
- **b.** \( f(g(x)) = x^{3} + \sin x + 1 \)
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Bonus Knowledge
To find the composite functions \( f(g(x)) \), we will substitute \( g(x) \) into \( f(x) \). a. Given \( f(x) = x^2 \) and \( g(x) = 2x + 1 \): \[ f(g(x)) = f(2x + 1) = (2x + 1)^2 = 4x^2 + 4x + 1 \] So, \( f(g(x)) = 4x^2 + 4x + 1 \). b. Given \( f(x) = x + 1 \) and \( g(x) = x^3 + \sin x \): \[ f(g(x)) = f(x^3 + \sin x) = (x^3 + \sin x) + 1 = x^3 + \sin x + 1 \] Thus, \( f(g(x)) = x^3 + \sin x + 1 \).