Question
upstudy study bank question image url

Fully simplify each of the following expressions. \( \begin{array}{ll}\text { (1) } \frac{1}{3} x(15 x-12 y)-\frac{1}{2}(6 x-4 y) & \text { (2) }-\frac{1}{5} x(25 x-10 y)+\frac{1}{3}(12 x-3 y) \\ \begin{array}{ll}\text { (3) } \frac{1}{7} p(14 q-21 y)-\frac{1}{5} g(10 p-15 y) & \text { 4. }\left(\frac{1}{2} x-3\right)\left(4 x-\frac{1}{3}\right) \\ \text { 5. } 5\left(\frac{1}{5} x-1\right)\left(5 x-\frac{1}{5}\right) & \text { 6. }(2 x-3 y)^{2}-(x-y)(3 x+2 y) \\ \text { 7. }(2 a-3)^{2}-(3 a+4)(3 a-4)+2(3 a+1)^{2} & \text { 8. } 3(2 x-3)(x+2)-2(x-3)(x+3) \\ \text { 9. }(2 a+b)^{2}-(3 a+4 b)(2 a+7 b) & \text { 10. } 3(x-2 y)^{3} \\ \text { 11. }\left(\frac{x}{3}-2\right)\left(\frac{x}{2}-3\right) & \text { 12. }\left(2 x-\frac{3}{x}\right)^{2}\end{array}\end{array} \)

Ask by Chandler Ball. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( 5x^2 - 4xy - 3x + 2y \)

Solution

Let's simplify each of the given expressions step by step. ### **Problem 1** Simplify \( \frac{1}{3} x(15 x - 12 y) - \frac{1}{2}(6 x - 4 y) \). **Step-by-Step Solution:** 1. **Distribute the terms:** \[ \frac{1}{3}x \cdot 15x = \frac{15}{3}x^2 = 5x^2 \] \[ \frac{1}{3}x \cdot (-12y) = -\frac{12}{3}xy = -4xy \] \[ -\frac{1}{2} \cdot 6x = -3x \] \[ -\frac{1}{2} \cdot (-4y) = 2y \] 2. **Combine all the terms:** \[ 5x^2 - 4xy - 3x + 2y \] **Final Answer:** \[ 5x^2 - 4xy - 3x + 2y \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Let's simplify each expression step by step. 1. \( \frac{1}{3} x(15 x-12 y)-\frac{1}{2}(6 x-4 y) \) Simplifying the first term: \[ \frac{1}{3}(15x^2 - 12xy) = 5x^2 - 4xy \] For the second term: \[ -\frac{1}{2}(6x - 4y) = -3x + 2y \] Combining these results: \[ 5x^2 - 4xy - 3x + 2y \] 2. \( -\frac{1}{5} x(25 x-10 y)+\frac{1}{3}(12 x-3 y) \) Simplifying the first term: \[ -\frac{1}{5}(-25x^2 + 10xy) = -5x^2 + 2xy \] For the second term: \[ \frac{1}{3}(12x - 3y) = 4x - y \] Combining these: \[ -5x^2 + 2xy + 4x - y \] 3. \( \frac{1}{7} p(14 q-21 y)-\frac{1}{5} g(10 p-15 y) \) Simplifying the first term: \[ \frac{1}{7}(14pq - 21py) = 2pq - 3py \] For the second term: \[ -\frac{1}{5}(10gp - 15gy) = -2gp + 3gy \] Combining these gives: \[ 2pq - 3py - 2gp + 3gy \] 4. \( \left(\frac{1}{2} x-3\right)\left(4 x-\frac{1}{3}\right) \) Applying the distributive property: \[ \frac{1}{2} x (4x) - \frac{1}{2} x (3) - 3(4x) + 3\left(\frac{1}{3}\right) = 2x^2 - \frac{3}{2}x - 12x + 1 = 2x^2 - \frac{27}{2}x + 1 \] 5. \( 5\left(\frac{1}{5} x-1\right)\left(5 x-\frac{1}{5}\right) \) Simplifying inside the parentheses: \[ (x-5)(25x - 1) = 25x^2 - x - 125 \] Then, multiplying by 5: \[ 125x^2 - 5x - 625 \] 6. \( (2 x-3 y)^{2}-(x-y)(3 x+2 y) \) Expanding the first term: \[ 4x^2 - 12xy + 9y^2 \] For the second term: \[ - (3x^2 - 5xy - 2y^2) \] Combining: \[ (4x^2 - 3x^2) + (-12xy + 5xy) + (9y^2 + 2y^2) = x^2 - 7xy + 11y^2 \] 7. \( (2 a-3)^{2}-(3 a+4)(3 a-4)+2(3 a+1)^{2} \) The first term gives: \[ 4a^2 - 12a + 9 \] The second term simplifies to: \[ - (9a^2 - 16) = -9a^2 + 16 \] And for the last term: \[ 2(9a^2 + 6a + 1) = 18a^2 + 12a + 2 \] Combining gives: \[ (4a^2 - 9a^2 + 18a^2) + (-12a + 12a) + (9 + 16 + 2) = 13a^2 + 27 \] 8

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy