Simplify by using the imaginary unit \( i \) \( \sqrt{-8} \cdot \sqrt{-2} \) \( \sqrt{-8} \cdot \sqrt{-2}=\square \) (Simplify your answer. Express complex numbers in terms of \( i \).)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To simplify \( \sqrt{-8} \cdot \sqrt{-2} \), we start by rewriting each square root in terms of \( i \). First, we have: \[ \sqrt{-8} = \sqrt{8} \cdot \sqrt{-1} = \sqrt{8} \cdot i = 2\sqrt{2} \cdot i \] Next, we simplify \( \sqrt{-2} \): \[ \sqrt{-2} = \sqrt{2} \cdot \sqrt{-1} = \sqrt{2} \cdot i \] Now, we can multiply the two results: \[ \sqrt{-8} \cdot \sqrt{-2} = (2\sqrt{2} \cdot i) \cdot (\sqrt{2} \cdot i) = 2\sqrt{2} \cdot \sqrt{2} \cdot i^2 \] Since \( i^2 = -1 \), we substitute that in: \[ 2\sqrt{2} \cdot \sqrt{2} \cdot i^2 = 2 \cdot 2 \cdot (-1) = 4 \cdot (-1) = -4 \] Thus, the simplified result is: \[ \sqrt{-8} \cdot \sqrt{-2} = -4 \]