Question
upstudy study bank question image url

Nubraižyk funkcijos grafika: \( \begin{array}{llll}\text { a) } f(x)=2 x-3 ; & \text { b) } f(x)=x^{2}+2 x-8 ; & \text { c) } f(x)=(x-2)^{2}-4 ; & \text { d) } f(x)=\frac{6}{x} ; \\ \text { e) } g(x)=3 x ; & \text { f) } g(x)=(x-1)(x+1) ; & \text { g) } g(x)=\frac{1}{2} x^{2}+1 ; & \text { h) } g(x)=-\frac{1}{2} x^{2}+2\end{array} \)

Ask by Lambert Stuart. in Lithuania
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the simplified descriptions of each function's graph: a) \( f(x) = 2x - 3 \): A straight line with a slope of 2, crossing the y-axis at -3. b) \( f(x) = x^{2} + 2x - 8 \): A parabola opening upwards with its vertex at (-1, -9) and roots at x = 2 and x = -4. c) \( f(x) = (x - 2)^{2} - 4 \): A parabola opening upwards with its vertex at (2, -4) and roots at x = 0 and x = 4. d) \( f(x) = \frac{6}{x} \): A hyperbola with asymptotes at x = 0 and y = 0, located in the first and third quadrants. e) \( g(x) = 3x \): A straight line with a slope of 3 passing through the origin. f) \( g(x) = (x - 1)(x + 1) = x^{2} - 1 \): A parabola opening upwards with its vertex at (0, -1) and roots at x = 1 and x = -1. g) \( g(x) = \frac{1}{2}x^{2} + 1 \): A parabola opening upwards with its vertex at (0, 1) and no x-intercepts. h) \( g(x) = -\frac{1}{2}x^{2} + 2 \): A parabola opening downwards with its vertex at (0, 2) and roots at x = 2 and x = -2. If you need more detailed information about any of these functions, feel free to ask!

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Extra Insights

Norėdami nubrėžti funkcijas, pirmiausia galima nustatyti keletą svarbių savybių, tokių kaip pjūvio taškai, ekstremumai ir asimptotos. Pvz., linijinei funkcijai \( f(x)=2x-3 \) grafikas bus tiesė, kurios nuolydis 2 ir pjaunamoji -3. Antrai funkcijai \( f(x)=x^2+2x-8 \) galima rasti šaknį naudojant kvadratinę formulę, o grafikas bus parabolė, atsiduriančiai viršuje. Parabolė \( f(x)=(x-2)^2-4 \) turi viršūnę taške (2, -4), o grafikas bus apsuktas į viršų. For \( f(x)=\frac{6}{x} \) pastebėsime, kad ji turi vertikalią asimptotą ties x=0 ir horizontalią ties y=0, nes tam tikrų x reikšmių grafikas bus vidinis, o tam tikrų - išorinis. Kiekvienai kitai funkcijai, pvz. tiesinei funkcijai \( g(x)=3x \), parabolėms arba atvirkštinėms funkcijoms, taip pat galite taikyti panašius principus, kad būtų lengviau suprasti jų formas ir elgseną.

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy