Question
upstudy study bank question image url

\( ( x ) = \left\{ \begin{array} { l } { 0 , x < 2 , x > 7 } \\ { \frac { 6 } { 23 } ( x ^ { 2 } - x ) , 2 \leq x \leq 7 } \end{array} \right. \)

Ask by Joseph Delgado. in Russia
Nov 05,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

La fonction \( f(x) \) est définie par \( 0 \) pour \( x < 2 \) ou \( x > 7 \), et par \( \frac{6}{23} (x^2 - x) \) pour \( 2 \leq x \leq 7 \).

Solution

La fonction \( f(x) \) est définie comme suit : \[ f(x) = \begin{cases} 0 & \text{si } x < 2 \text{ ou } x > 7 \\ \frac{6}{23} (x^2 - x) & \text{si } 2 \leq x \leq 7 \end{cases} \] Cela signifie que pour les valeurs de \( x \) inférieures à 2 ou supérieures à 7, la fonction prend la valeur 0. Pour les valeurs de \( x \) comprises entre 2 et 7 inclus, la fonction est donnée par l'expression \( \frac{6}{23} (x^2 - x) \). Si vous avez besoin d'une analyse plus approfondie de cette fonction, comme son domaine, son image, ou son comportement, n'hésitez pas à demander !

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

This piecewise function is quite intriguing! The function is designed to output zero for any input \( x \) that is either less than 2 or greater than 7, creating a nice "funnel" of interest between values 2 and 7. In the interval from 2 to 7, the function takes on a quadratic form represented by \( \frac {6}{23} (x^2 - x) \). This transformation allows for a more dynamic behavior within that range, producing a parabola that starts at zero at both endpoints. When exploring this function further, you might want to graph it to visualize how it behaves across different intervals. Not only will you see the zeros outside the specified range, but the quadratic nature in the middle portion will provide interesting features, such as vertex and intercept calculations. Also, examining points within the interval can reveal local maxima or minima, enhancing your understanding of its overall shape and behavior.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy