Question
upstudy study bank question image url

\( 6 \quad \) b) \( y=\sqrt{\left(x^{3}+2 x\right)} \) \( \frac{d u^{n}}{d x}=n=\left(x^{3}+2 x\right)^{\frac{1}{2}} \frac{d y}{d x}= \) \( \frac{d u}{d x} \)

Ask by Campos Peters. in Mexico
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La derivada de \( y = \sqrt{x^{3} + 2x} \) es \( \frac{dy}{dx} = \frac{3x^{2} + 2}{2\,\sqrt{x^{3} + 2x}} \).

Solution

Para encontrar la derivada de la función \( y = \sqrt{x^{3} + 2x} \), seguiremos los pasos utilizando la **regla de la cadena**. 1. **Reescribimos la función en términos de exponentes:** \[ y = (x^{3} + 2x)^{\frac{1}{2}} \] 2. **Aplicamos la regla de la cadena para derivar:** \[ \frac{dy}{dx} = \frac{1}{2} (x^{3} + 2x)^{-\frac{1}{2}} \cdot \frac{d}{dx}(x^{3} + 2x) \] 3. **Derivamos el interior de la función:** \[ \frac{d}{dx}(x^{3} + 2x) = 3x^{2} + 2 \] 4. **Sustituimos la derivada del interior en la expresión inicial:** \[ \frac{dy}{dx} = \frac{1}{2} (x^{3} + 2x)^{-\frac{1}{2}} \cdot (3x^{2} + 2) \] 5. **Simplificamos la expresión:** \[ \frac{dy}{dx} = \frac{3x^{2} + 2}{2 \sqrt{x^{3} + 2x}} \] **Resultado Final:** \[ \boxed{ \frac{dy}{dx} = \frac{3x^{2} + 2}{2\,\sqrt{x^{3} + 2x}} } \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To find the derivative \( \frac{dy}{dx} \) for the function \( y = \sqrt{x^3 + 2x} \), you would apply the chain rule. First, rewrite the function as \( y = (x^3 + 2x)^{1/2} \). Then, using the chain rule: \[ \frac{dy}{dx} = \frac{1}{2}(x^3 + 2x)^{-1/2} \cdot \frac{d}{dx}(x^3 + 2x). \] Next, calculate \( \frac{d}{dx}(x^3 + 2x) = 3x^2 + 2 \). Plugging this in gives: \[ \frac{dy}{dx} = \frac{1}{2}(x^3 + 2x)^{-1/2} \cdot (3x^2 + 2). \] Now simplify it to get the final expression for the derivative! While the math may seem daunting, it's all about staying organized. Breaking it down step by step can prevent mistakes. A common pitfall is forgetting to apply the chain rule properly. Be sure to differentiate the inner function (inside the square root) correctly and don't skip simplifying. For those wanting to dive deeper into calculus, consider exploring resources like "Calculus Made Easy" by Silvanus P. Thompson, which breaks down complex concepts into easier-to-understand pieces. Websites like Khan Academy also offer engaging video tutorials to solidify your understanding and provide interactive exercises for practice.

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy