Question
upstudy study bank question image url

27 \( \begin{aligned} & \int \frac{5}{x^{6}} d x \\ & \int 5 x^{-6} \\ = & \frac{5 x^{-5}}{-5} \\ = & -\frac{1}{x^{5}}\end{aligned} \)

Ask by Guzman Reese. in Puerto Rico
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La integral de \( \frac{5}{x^{6}} \) con respecto a \( x \) es \( -\frac{1}{x^{5}} + C \).

Solution

Sí, has calculado correctamente la integral. A continuación, se muestra el desarrollo paso a paso en español: \[ \begin{aligned} & \int \frac{5}{x^{6}} \, dx \\ & = \int 5 x^{-6} \, dx \\ & = 5 \int x^{-6} \, dx \\ & = 5 \cdot \left( \frac{x^{-5}}{-5} \right) + C \\ & = -\frac{1}{x^{5}} + C \end{aligned} \] **Explicación detallada:** 1. **Expresar la integral con exponentes negativos:** \[ \int \frac{5}{x^{6}} \, dx = \int 5 x^{-6} \, dx \] 2. **Factorizar la constante 5 fuera de la integral:** \[ 5 \int x^{-6} \, dx \] 3. **Aplicar la regla de integración para potencias de \( x \):** \[ \int x^{n} \, dx = \frac{x^{n+1}}{n+1} + C \quad \text{(donde } n \neq -1\text{)} \] En este caso, \( n = -6 \), por lo que: \[ \int x^{-6} \, dx = \frac{x^{-5}}{-5} + C \] 4. **Multiplicar por la constante 5:** \[ 5 \cdot \frac{x^{-5}}{-5} = -\frac{1}{x^{5}} \] 5. **Añadir la constante de integración \( C \):** \[ -\frac{1}{x^{5}} + C \] Por lo tanto, la integral de \( \frac{5}{x^{6}} \) con respecto a \( x \) es: \[ -\frac{1}{x^{5}} + C \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Let's jazz it up a bit with some historical context! The use of integrals and an understanding of calculus can be traced back to the ancient Greeks, but it wasn't until the 17th century that mathematicians like Isaac Newton and Gottfried Wilhelm Leibniz formally developed an organized approach to differentiation and integration. They created the foundational concepts that we use today in calculus classes worldwide! Now, let’s swing into real-world application! Integrals aren't just abstract concepts; they're used extensively in fields like physics, engineering, and economics. For instance, when calculating the area under a curve, engineers use integrals to determine things like the total distance traveled by an object over time, or the materials needed to build structures. So next time you're integrating, remember, you could be solving real-world problems!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy