\( 5 . \lim _ { x \rightarrow 2 } \frac { x ^ { 4 } + x ^ { 3 } - 24 } { x ^ { 2 } - 6 } = \frac { 12 } { } \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To solve the limit, let's first calculate the expression inside the limit as \( x \) approaches 2. We start with substituting \( x = 2 \): 1. The numerator: \[ (2^4) + (2^3) - 24 = 16 + 8 - 24 = 0 \] 2. The denominator: \[ (2^2) - 6 = 4 - 6 = -2 \] Since both the numerator and denominator tend towards 0, we can apply L'Hôpital's Rule. We'll differentiate the numerator and the denominator separately: - Derivative of the numerator: \[ \frac{d}{dx}(x^4 + x^3 - 24) = 4x^3 + 3x^2 \] - Derivative of the denominator: \[ \frac{d}{dx}(x^2 - 6) = 2x \] Now we evaluate the limit again: \[ \lim_{x \rightarrow 2} \frac{4x^3 + 3x^2}{2x} \] Substituting \( x = 2 \): - Numerator: \[ 4(2^3) + 3(2^2) = 4(8) + 3(4) = 32 + 12 = 44 \] - Denominator: \[ 2(2) = 4 \] So we have: \[ \lim_{x \rightarrow 2} \frac{4x^3 + 3x^2}{2x} = \frac{44}{4} = 11 \] Now, multiplying by 5: \[ 5 \cdot 11 = 55 \] Thus, the value of the expression is: \[ 5 \cdot \lim _ { x \rightarrow 2 } \frac { x ^ { 4 } + x ^ { 3 } - 24 } { x ^ { 2 } - 6 } = 55 \] This means that the statement \( 5 \cdot \lim _ { x \rightarrow 2 } \frac { x ^ { 4 } + x ^ { 3 } - 24 } { x ^ { 2 } - 6 } = \frac { 12 }{ } \) is incorrect. The correct value is 55.