Question
upstudy study bank question image url

\( 5 . \lim _ { x \rightarrow 2 } \frac { x ^ { 4 } + x ^ { 3 } - 24 } { x ^ { 2 } - 6 } = \frac { 12 } { } \)

Ask by Pena Barker. in Ecuador
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La respuesta es que no existe un valor finito para el denominador que satisfaga la ecuación, ya que el límite es cero y la ecuación \(0 = \frac{12}{\_}\) solo se cumple si el denominador tiende a infinito.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Mind Expander

To solve the limit, let's first calculate the expression inside the limit as \( x \) approaches 2. We start with substituting \( x = 2 \): 1. The numerator: \[ (2^4) + (2^3) - 24 = 16 + 8 - 24 = 0 \] 2. The denominator: \[ (2^2) - 6 = 4 - 6 = -2 \] Since both the numerator and denominator tend towards 0, we can apply L'Hôpital's Rule. We'll differentiate the numerator and the denominator separately: - Derivative of the numerator: \[ \frac{d}{dx}(x^4 + x^3 - 24) = 4x^3 + 3x^2 \] - Derivative of the denominator: \[ \frac{d}{dx}(x^2 - 6) = 2x \] Now we evaluate the limit again: \[ \lim_{x \rightarrow 2} \frac{4x^3 + 3x^2}{2x} \] Substituting \( x = 2 \): - Numerator: \[ 4(2^3) + 3(2^2) = 4(8) + 3(4) = 32 + 12 = 44 \] - Denominator: \[ 2(2) = 4 \] So we have: \[ \lim_{x \rightarrow 2} \frac{4x^3 + 3x^2}{2x} = \frac{44}{4} = 11 \] Now, multiplying by 5: \[ 5 \cdot 11 = 55 \] Thus, the value of the expression is: \[ 5 \cdot \lim _ { x \rightarrow 2 } \frac { x ^ { 4 } + x ^ { 3 } - 24 } { x ^ { 2 } - 6 } = 55 \] This means that the statement \( 5 \cdot \lim _ { x \rightarrow 2 } \frac { x ^ { 4 } + x ^ { 3 } - 24 } { x ^ { 2 } - 6 } = \frac { 12 }{ } \) is incorrect. The correct value is 55.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy