Question
upstudy study bank question image url

5 On a three-day backpacking trip, Jacob hiked 3 miles the the second day, and \( \frac{1}{3} \) of the total distance on the third de miles did he hike altogether?

Ask by Garza Bird. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Jacob caminó un total de 9 millas durante los tres días de la excursión.

Solution

Para resolver el problema, sigamos estos pasos: **Datos proporcionados:** - En el segundo día, Jacob caminó 3 millas. - En el tercer día, caminó \(\frac{1}{3}\) de la distancia total recorrida. **Supongamos:** - Sea \( D \) la distancia total que Jacob caminó en los tres días. - Entonces, en el tercer día, Jacob caminó \(\frac{1}{3}D \). **Planteamiento de la ecuación:** La suma de las distancias de los tres días es igual a la distancia total \( D \). \[ \text{Día 1} + \text{Día 2} + \text{Día 3} = D \] Sabemos que: - Día 2: \( 3 \) millas - Día 3: \( \frac{1}{3}D \) Asumimos que en el Día 1, Jacob caminó la misma cantidad que en el Día 2 (esto es una suposición común cuando no se proporciona información adicional): \[ \text{Día 1} = 3 \text{ millas} \] Entonces: \[ 3 + 3 + \frac{1}{3}D = D \] **Resolución de la ecuación:** \[ 6 + \frac{1}{3}D = D \] Restamos \(\frac{1}{3}D\) de ambos lados: \[ 6 = D - \frac{1}{3}D \] \[ 6 = \frac{2}{3}D \] Multiplicamos ambos lados por \(\frac{3}{2}\): \[ D = 6 \times \frac{3}{2} = 9 \] **Respuesta:** Jacob caminó un total de **9 millas** durante los tres días de la excursión.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To find the total distance Jacob hiked altogether, let's denote the total distance as \( D \). According to the problem, Jacob hiked \( 3 \) miles on the second day and \( \frac{1}{3} \) of the total distance \( D \) on the third day. Therefore, the distance he hiked on the third day is \( \frac{1}{3}D \). Now, since he hiked for three days, we can establish the equation for total distance: \[ D = \text{(distance on Day 1)} + 3 + \frac{1}{3}D \] Assuming he hiked \( d_1 \) miles on the first day, we get: \[ D = d_1 + 3 + \frac{1}{3}D \] To isolate \( D \), multiply the entire equation by \( 3 \) to eliminate the fraction: \[ 3D = 3d_1 + 9 + D \] Now, rearranging gives us: \[ 2D = 3d_1 + 9 \] To find \( D \), we'll need to know how far he hiked on the first day, which is not provided here. However, if you knew the hiking distance on the first day, you could easily solve for \( D \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy